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General Nomenclature

 

The following list shows the nomenclature of the general symbols. Special symbols are not
included in this list and are explained in immediate context of the particular models. Few symbols
have more than one meaning and they are described in the particular text. 
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 General Symbols    
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d

 

Drag coefficient
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Skin friction coefficient

 

c

 

l

 

Lift coefficient
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p

 

Specific heat at constant pressure
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Specific heat at constant volume
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Drag force
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Specific energy, 
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Sub-index; 
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= 1,2,3
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Sub-index; 
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= 1,2,3
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Turbulent kinetic energy

 

l

 

Turbulent mixing length
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Mass
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Molecular heat-flux rate in the x
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Magnitude of mean rotation rate,
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Reynolds number, 
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Magnitude of mean strain rate,
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Mean strain rate tensor, (
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Time

 

T

 

Temperature
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Mean flow velocity component in the 
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j

 

 

 

coordinate direction

 

U
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Characteristic velocity scale

 

x

 

j

 

Space coordinate component; 
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= 1,2,3

 

y

 

Space distance to nearest no-slip surface
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 General Greek Symbols   

 

γ

 

Ratio of specific heats, 

 

c

 

p 

 

/c

 

v

 

δ

 

Boundary layer thickness

 

δ

 

*

 

Displacement thickness

 

δ

 

ij

 

Kronecker second-order tensor

 

ε

 

Turbulent dissipation rate

 

ε

 

ij

 

l

 

Alternating third-order tensor

θ Momentum thickness

κ Thermal conductivity

κτ Turbulent eddy thermal conductivity

µ Molecular viscosity

µt Turbulent eddy viscosity

ν Kinematic viscosity, m/r

νt Turbulent kinematic eddy viscosity

ρ Density

τij Total stress tensor

τl ij Molecular stress tensor

τt ij Turbulent Reynolds stress tensor

ψ Stream function

ω Specific turbulent dissipation rate, turbulent frequency

ωi Vorticity vector component, εijl(∂∂ul/∂xj)

Ω Magnitude of mean vorticity

Ωij Mean rotation tensor, (∂∂ui/∂∂xj – ∂∂uj/∂∂xi)/2
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Turbulence Modeling Validation, 
Testing, and Development

 

J. E. Bardina,* P. G. Huang,

 

†

 

  and T. J. Coakley

Ames Research Center

 

Summary

 

The primary objective of this work is to provide accurate numerical solutions for selected flow
fields and to compare and evaluate the performance of selected turbulence models with experimental
results. Four popular turbulence models have been tested and validated against experimental data
of ten turbulent flows. The models are: 1) the two-equation 
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 model of Wilcox, 2) the two-equation
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ε

 

 model of Launder and Sharma, 3) the two-equation 
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ω/

 

k
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ε

 

 

 

SST

 

 model of Menter, and 4) the one-
equation model of Spalart and Allmaras. The flows investigated are five free shear flows consisting of
a mixing layer, a round jet, a plane jet, a plane wake, and a compressible mixing layer; and five
boundary layer flows consisting of an incompressible flat plate, a Mach 5 adiabatic flat plate, a sepa-
rated boundary layer, an axisymmetric shock-wave/boundary layer interaction, and an RAE 2822
transonic airfoil. The experimental data for these flows are well established and have been extensively
used in model developments. The results are shown in the following four sections: Part A describes
the equations of motion and boundary conditions; Part B describes the model equations, constants,
parameters, boundary conditions, and numerical implementation; and Parts C and D describe the
experimental data and the performance of the models in the free-shear flows and the boundary layer
flows, respectively. 

 

*
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Introduction

 

Turbulence is one of the key phenomena in fluid dynamics. A major challenge in aerodynamic
designs is the accuracy of turbulence models for simulations of complex turbulent flows. Develop-
ment of improved turbulence models has increased in the last decade due to technological require-
ments of present aerodynamic systems and advances in computers and numerical simulation
capabilities. The proliferation of models and the lack of information about their performance under
different flow conditions create additional uncertainties and risks in the design process. The minimi-
zation of these risks can be achieved by defining standard criteria for evaluating turbulence models.
Validation and testing of advanced turbulence models are necessary to understand the capabilities and
limitations of present turbulence models. A unified and effective evaluation criterion for turbulence
models is necessary to accurately predict complex turbulent flows. This process involves the defining
and updating of metrics with specific testing and validation procedures. The methodology provides a
basis for developing accurate state-of-the-art models and constitutes a framework for NASA, indus-
try, and universities to achieve advances in this important area of engineering development and
research (refs. 1–3).

The general objective of this research is to provide NASA and industry with effective turbu-
lence models to be used with the Reynolds-averaged Navier-Stokes equations and implemented in
computational fluid dynamics (CFD) codes used to solve aerodynamic flows of interest. The specific
aim of this effort is the development of a methodology for the validation and testing of current state-
of-the-art turbulence models which can be used and applied to the development and testing of new
and advanced models.

The results and discussion presented here serve two purposes—one is to evaluate the perfor-
mance of turbulence models; the other is to establish standard numerical solutions for the models. The
former enables a user to select a “desirable” turbulence model for his application. For example, if one
is interested in predicting an impinging jet, one may make selection based on a personal judgement of
the model performance in a few relevant benchmark comparisons illustrated in this report, such as
free jet or a separating boundary layer. The later enables modelers and users to determine criteria and
metrics required to produce code- and grid-independent numerical solutions.

In the present study, four of the currently most popular models were selected in the benchmark
comparisons—the two-equation 
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 model of Wilcox (ref. 4), the two-equation 
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ε

 

 model of Launder
and Sharma (refs. 5 and 6), the two-equation 
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ω

 

 

 

SST

 

 model of Menter (ref. 7), and the one-equation
model of Spalart and Allmaras (refs. 8 and 9). Model developers and users are encouraged to validate
results obtained with other models, but it is advised that they follow the guidelines illustrated in each
section. It is suggested that the results posted in this report should be repeatable by other computer
codes. The establishment of “well-controlled" solutions enables CFD code developers to validate
their implementations of the turbulence model in their own application codes. With some careful
measures to reduce the possible errors involved, it is expected that the errors be reduced to less than
2% when comparing with the standard solutions provided in this report.

This initial effort addresses ten experimental flows. The flows include free-shear flows, attached
and separated boundary layers. The experimental data are well established and has been extensively
used in model developments. The basic free-shear flows considered in this validation are a self-
similar incompressible mixing layer, round jet, plane jet, plane wake, and compressible mixing layer.
The basic boundary layer flows considered in this validation are an incompressible flat plate, a
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Mach 5 adiabatic flat plate, a separated boundary layer with adverse pressure gradient, an axisymmet-
ric shock-wave/boundary layer flow, and an RAE 2822 airfoil. 

The model validation efforts concentrate on the predictions of the experimental data and the
sensitivity to physical and numerical effects. These effects include sensitivity analysis to grid resolu-
tion, freestream turbulence, initial conditions, and code selection.

We introduce each test case with a general discussion of the flow and data selected for compari-
son, which may involve actual measured data sets or may be a well-established experimental correla-
tion. A second section addresses issues regarding sensitivity of the solution to establish standard
solutions. These issues involve the assessment of numerical and boundary condition errors and the
measures to reduce them. In particular, the “standard” solutions will be reported in this section. In
some cases, the computational results are reported in terms of percent errors against experimental
correlations. However, this does not indicate that the experimental correlations are the “law of nature”
but the purpose is to provide a convenient way to distinguish the model differences. The last section
provides particular instructions of the case to establish model solutions that are not only grid indepen-
dent but also code independent.

The present report is divided in four main sections. Part A describes the governing equations of
turbulent flow which in this case are the Reynolds-averaged Navier-Stokes equations. In some test
cases, the equations are reduced to the two-dimensional or axisymmetric boundary layer equations, or
the self-similar free-shear-layer equations. Part B describes the turbulence models, the model equa-
tions, boundary conditions, and numerical treatment. Part C describes the free-shear flows and Part D
describes the boundary layer flows. Each flow case describes the experimental data, model predic-
tions, and sensitivity study.
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Part A. Governing Equations of Motion for a Turbulent Flow

Section 1. Governing Equations

a. Conservation equations

 

The governing equations of motion for a continuous viscous fluid are the three-dimensional
time-dependent compressible Navier-Stokes equations (ref. 3). These equations represent the flow
conservation laws and the fluid property laws. The conservation laws of mass, momentum, and
energy and the equation of state for a perfect gas expressed in terms of Reynolds density-averaged
variables and compact tensor notation are 

 

•

 

 

 

Mass conservation equation:

(1.1)

 

•

 

 Momentum conservation equation: 

(1.2)

 

•

 

 

 

Energy conservation equation:

 (1.3)

 

•

 

 

 

Perfect gas equation of state:

 (1.4)

Repeated indices in any term denote summation over the spatial index range 

 

(j 

 

= 1,2,3 for three-
dimensional flows and 

 

j 

 

= 1,2 for two-dimensional flows).

For isothermal flows with incompressible fluids, these equations reduce to the set of mass
and momentum equations, and the pressure field is obtained from the mass or continuity equation
using the method of artificial compressibility (as in the INS2D code, for example) or other numerical
methods.

 

b. Turbulent eddy viscosity closure model

 

The closure of these equations requires the definition of the turbulent Reynolds stresses and heat
fluxes in terms of known quantities (ref. 4). For eddy viscosity models, the stress tensor is modeled as
proportional to the mean strain-rate tensor, and the factor of proportionality is the eddy viscosity
which is modeled in terms of additional turbulent scale variables. Two of the more widely used turbu-
lent scales are the turbulent kinetic energy and its rate of energy dissipation.

This report will deal exclusively with isotropic eddy viscosity models. In these models, the total
molecular and turbulent stresses and heat fluxes are expressed as functions of the molecular and tur-
bulent viscosities as follows:

t∂
∂ρ

x j∂
∂ ρu j( )+ 0=

∂ρui

∂t
-----------

x j∂
∂ ρu jui pδij τ ij–+( )+ 0=

t∂
∂e

x j∂
∂

u j e p+( ) uiτ ij q j––[ ]+ 0=

p RρT=
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•

 

 

 

Total molecular and Reynolds stresses:

(1.5)

                                              where

The turbulent stresses are modeled using the Boussinesq approximation in terms of the eddy viscos-
ity, 

 

µ

 

t

 

, in analogy with Stoke’s law for the molecular stresses.

 

•

 

 

 

Heat-flux rates:

 (1.6)

The turbulent heat-transfer rates are modeled following Fourier’s law for laminar flow in terms of the
eddy thermal conductivity, 

 

κ

 

t

 

.

In most application CFD codes, the equations are written in nondimensional form, and the shear
stresses and heat-flux rates are expressed in terms of Reynolds and Prandtl numbers. The shear-stress
and heat-flux equations 1.5 and 1.6 may be written in terms of general nondimensional variables as
follows:

 

•

 

 

 

Total stresses: 

(1.7)

 

•

 

 

 

Heat-flux rates:

 (1.8)

with all variables representing nondimensional quantities, and reference variables denoted as 

 

L

 

∞

 

,  

 

ρ

 

∞

 

,
and p

 

∞

 

 (or 

 

u

 

∞

 

) which are usually defined based on inlet or freestream conditions.

The closure using a turbulent eddy viscosity model defines 

 

µ

 

t

 

 in terms of known mean quanti-
ties and additional turbulent-scale quantities with their respective transport equations, such as turbu-
lent kinetic energy and its rate of dissipation. In sections 3–6 of Part B, four eddy viscosity models are
described in detail, including a one-equation and three two-equation turbulence models.

 

c. Transformation of transport equations

 

The governing equations of motion are applied to different flows. The complexity of the flow
geometry varies from simple to very complex. The equations of motion are frequently transformed
and simplified to represent these problems more efficiently. For example, the equations are often
transformed into generalized curvilinear coordinates or unstructured systems to simulate complex
geometries. The equations may be simplified to represent axisymmetric or two-dimensional flows,

τ ij τ lij
τ tij

+=

τ lij
2µ Sij Snnδij 3⁄–( )=

τ tij
2µt Sij Snnδij 3⁄–( ) 2ρkδij 3⁄–=
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1
2
---
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∂ui
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∂u j+

 
 
 

=

q j ql j
qt j

+ κ κ t+( )
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∂T
–= =
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q j
γ

γ 1–
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  1
Re∞
---------- µ

Pr
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µt

Prt
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x j∂
∂T
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and may be simplified further to represent boundary layers. The equations may be transformed into
self-similar coordinates and variables to represent equilibrium boundary and free-shear layers.

The free-shear layers tested in this report have been solved using the Navier-Stokes equations
and similarity equations. In particular, the similarity equations to represent the free-shear layers are
given in the appendix of this report. These equations are reported for the purpose of indicating the
precise assumptions and approximations used in the formulations.

d. Boundary conditions

The particular boundary conditions imposed on the flow variables are flow dependent, and
they will be described in Parts C and D. In general, most boundary conditions are Dirichlet or
von Neumann conditions. Dirichlet conditions with specific function values are typically specified at
inflow boundaries, while von Neumann conditions with specified zero gradients are typically speci-
fied at symmetry boundaries. No slip (mixed) conditions are specified at wall boundaries. Normally,
outflow conditions are extrapolated.



7

Part B. Turbulence models

The following sections give a general classification of turbulence models as a framework of
reference and a detailed description of each one of the four turbulence eddy viscosity models vali-
dated in this study.                     

Section 2. Classification of Turbulence Models

Section 3. k-ε Two-Equation Model (Launder-Sharma)

Section 4. k-ω Two-Equation Model (Wilcox)

Section 5. SST Two-Equation Model (Menter)

Section 6. One-Equation Model (Spalart-Allmaras)
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Section 2. Classification of Turbulence Models

The general classification of the turbulence models using one-point closure is shown below as a 
framework of reference for the turbulence models and is defined as follows:

•  Major classification determines the modeling of the turbulent stresses:

1) Reynolds stress model

2) Algebraic stress model

3) Eddy viscosity model

•  Subclassification 1 determines the number of partial-differential model equations required to
define the turbulent scales.

•  Subclassification 2 determines the number of ordinary-differential or other non-partial-
differential model equations required to define the turbulent scales.

•  Subclassification 3 determines the general type of fluid of the model:

1) Incompressible/compressible fluid model

2) Compressible fluid model

3) Incompressible fluid model

•  Subclassification 4 determines the treatment of the near wall-boundary flow:

1) Integration to the wall

2) Wall function

3) Algebraic with matching point

4) Switch to one-equation near the wall

•  Other models that may not be easily classifiable in the preceding format should be clearly 
described by the developer and so noted.

For example, the standard two-equation k-ε and k-ω turbulence models are classified as eddy
viscosity models, with two partial-differential equations for incompressible and compressible fluids,
and integration capability to the wall, i.e., 32011. (The number 32011 denotes that the major classifi-
cation is 3, the subclassification 1 is 2, the subclassification 2 is 0, the subclassification 3 is 1, and the
subclassification 4 is 1.) The one-equation Spalart-Allmaras model is classified as an eddy viscosity
model, with one partial-differential equation for incompressible and compressible fluids, and integra-
tion capability to the wall, i.e., 31011. 
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Section 3. k-ε Two-Equation Model (Launder-Sharma)

a. Model classification: 32011

Two-equation eddy viscosity model for incompressible/compressible turbulent flows with inte-
gration to the wall.

b. Summary

The k-ε model (refs. 4–6) is the most widely known and extensively used two-equation eddy
viscosity model. Different versions of this model are found in the literature. The main references on
this model are described by Jones and Launder (ref. 5) and Launder and Sharma (ref. 6). The formula-
tion used here is the one of Launder and Sharma. This model is sometimes referred in this report as
the standard k-ε model. Other formulations of the k-ε model are reported in the literature or are com-
mercially available, and should be included in future work (refs. 4 and 10).

The k-ε model was originally developed to improve the mixing-length model and to avoid the
algebraic prescription of the turbulent length scale in complex flows. Transport equations are solved
for two scalar properties of turbulence. The k-equation is a model of the transport equation for the tur-
bulent kinetic energy, and the ε-equation is a model for the dissipation rate of turbulent kinetic energy. 

This model has given reasonably good results for free-shear-layer flows with relatively small
pressure gradients. For wall bounded flows, the model gives good agreement with experimental
results for zero and small mean pressure gradients, but is less accurate for large adverse pressure gra-
dients (ref. 4). The predictions of the model are insensitive to freestream values of the turbulence. The
model requires explicit wall-damping functions and the use of fine grid spacing near solid walls. 

c. Model equations

The Reynolds stresses are modeled in terms of the eddy viscosity as follows:

(3.1)

where µt is the eddy viscosity, Sij is the mean-velocity strain-rate tensor, ρ is the fluid density, k is the
turbulent kinetic energy, and δij is the Kronecker delta.

The eddy viscosity is defined as a function of the turbulent kinetic energy, k, and the turbulent
dissipation rate, ε, as 

 (3.2)

The eddy viscosity is scaled with the fluid density, ρ, the turbulent velocity scale, k1/2, and the length-
scale, k3/2/ε, based on local dimensional analysis. The model coefficient, cµ, is determined by equilib-
rium analysis at high Reynolds numbers, and the damping function, fµ, is modeled in terms of a turbu-
lence Reynolds number, Ret = ρk2/εµ.

The turbulence transport equations for the k-ε Launder-Sharma model are defined below. 

•  Turbulence energy transport equation:

 (3.3)

τ tij
2µt Sij Snnδij 3⁄–( ) 2ρkδij 3⁄–=

µt cµ f µρk
2 ε⁄=

∂ρk
∂t

---------
x j∂
∂ ρu j x j∂

∂k µ
µτ
σk
-----+

 
 
 

–
x j∂

∂k

 
 
 

+ τ tijSij ρε– φk+=
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•  Energy dissipation transport equation:

 (3.4)

where the right-hand-side terms represent production, dissipation, and wall terms, respectively.

d. Model constants and parameters

The model constants are defined below as

(3.5)

The near wall damping functions are

(3.6)

and the explicit wall terms are

(3.7)

where us is the flow velocity parallel to the wall.

e. Boundary conditions

Boundary conditions at no-slip surfaces with integration to the wall are given by the following
simpler relationships: 

 (3.8)

when the above wall terms are included (see eq. 3.7) and the effective dissipation rate is expressed as
ε – φk/ρ. Zero-gradient conditions are applied at symmetry boundaries, and additional boundary con-
ditions are discussed further for each flow case.

f. Numerical implementation

The turbulence transport equations are similar to the transport equations of the mean flow. The
recommended numerical treatment of each term of the turbulence transport equations is the numerical
treatment used in this work for the mean flow equations of each particular numerical code. Although
not including any specific reference, these statements reflect the general treatment used in different
numerical methods and codes developed and applied at NASA Ames Research Center.

Second-order numerical differences are recommended and used for the convective and diffusive
terms of the flow and turbulence model equations. For the convective terms using Navier-Stokes solv-
ers, second-order upwind flux-difference splitting methods with flux-limiters have been used and are
recommended, although in some cases first-order methods have been used successfully with the tur-
bulence equations. Implicit second-order central-difference methods for the diffusion terms of the

∂ρε
∂t
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∂ ρu jε µ

µτ
σε
-----+

 
 
 

–
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ε
k
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momentum, energy, and turbulence model equations have been used and are recommended. These
methods provide efficient numerical procedures and good agreement with theory and experiment.

 The numerical treatment of source terms of the turbulence model equations is of major impor-
tance for the stability of this scheme. It is recommended to treat implicitly all negative (destruction)
terms and explicitly all positive (production) right-hand-side terms. This procedure leads to an
increase in the diagonal dominance of the implicit portion of the scheme and thereby enhances its sta-
bility. The following representation of the approximate linearization for the source terms of the turbu-
lent kinetic energy equation is indicative of the method employed here. 

    (3.9)

where Pk and Dk represent the sum of the positive and negative source terms, respectively, and the
subscript n and n+1 represent the current and the next time steps, respectively. See reference 32 for
additional details in the procedure.

Pk Dk–[ ]
n 1+

Pk Dk–[ ]
n

Dk

k
------

n
kn 1+ kn–( )–≈
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Section 4. k-ω Two-Equation Model (Wilcox)

a. Model classification: 32011

Two-equation eddy viscosity model for incompressible/compressible turbulent flows with inte-
gration to the wall.

b. Summary

The k-ω model (refs. 4 and 11) is a well known and widely tested two-equation eddy viscosity
model. The main reference to this model is given by Wilcox (ref. 4), and his formulation is used here.
This model is referred to here as the standard k-ω model. The roots of this model can be traced to Kol-
mogorov, Prandtl, Saffman, and Wilcox in collaboration with other scientists. 

This model was originated at about the same time and was developed in parallel with the k-ε
model as an alternative to define the eddy viscosity function. Convective transport equations are
solved for the turbulent kinetic energy and its specific dissipation rate, k and ω, respectively.

The k-ω model of Wilcox has proven to be superior in numerical stability to the k-ε model pri-
marily in the viscous sublayer near the wall. This model does not require explicit wall-damping func-
tions as do the k-ε and other two-equation models due to the large values of ω in the wall region. The
numerical wall boundary conditions require the specification of the distance from the wall to the first
point off the wall. In the logarithmic region, the model gives good agreement with experimental
results for mild adverse pressure gradient flows.

In free-shear layer and adverse-pressure-gradient boundary layer flows, the results of the k-ω
model are sensitive to small freestream values of ω (refs. 11 and 12). In complex Navier-Stokes com-
putations it is difficult to exercise enough control over the local freestream turbulence to avoid small
freestream ω and ambiguities in the predicted results.

c. Model equations

 The Reynolds stresses are modeled in terms of the eddy viscosity as follows:

(4.1)

 The eddy viscosity is defined as a function of the turbulent kinetic energy, k, and the specific
rate of dissipation, ω, as follows: 

  (4.2)

The two transport model equations for the k and ω scalar turbulence scales are defined below. 

 (4.3)

 (4.4)

τ tij
2µt Sij Snnδij 3⁄–( ) 2ρkδij 3⁄–=

µt ρk ω⁄=

∂ρk
∂t

---------
x j∂
∂ ρu jk µ σ∗ µt+( )–

x j∂
∂k

 
 + τ tij

Sij β∗ ρωk–=

∂ρω
∂t

-----------
x j∂
∂ ρu jω µ σµt+( )–

x j∂
∂ω

 
 + αω

k
----τ tij

Sij βρω2
–=
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d. Model constants and parameters

Following Wilcox (ref. 4), the model constants are defined as

(4.5)

e. Boundary conditions

The choice of freestream values recommended for boundary layer flows (ref. 3) are

 (4.6)

where L is the approximate length of the computational domain and U∞ is the characteristic velocity.
The factor of proportionality λ = 10 has been recommended (ref. 3). 

Free-shear layers are more sensitive to small freestream values of ω∞ and larger values of ω are
needed in the freestream. Following a similar analysis to the one referenced above, and based on the
analysis of self-similarity, a value of λ may be determined. This analysis is not included here; how-
ever, it shows a value of at least λ = 40 for mixing layers, increasing up to  λ = 80 for round jets.

 Boundary conditions at no-slip surfaces are given by the following relationships:

 (4.7)

where y1 is the distance of the first point away from the wall and y1
+ < 1.

Zero-gradient conditions are applied at symmetry boundaries, and additional boundary condi-
tions are discussed further for each flow case.

f. Numerical implementation

The numerical implementation of the k-ω model equations is similar to that described on
pages 10 and 11 for two-equation models. The implicit treatment of the source terms shows one
difference—a factor of 2 is introduced in the implicit treatment of the dissipation term βρω2 of the
ω-equation due to the proportionality of this term to ω2.

α 5
9
---= β 3

40
------= β∗ 9

100
---------=

σ 0.5= σ∗ 0.5= Prt 0.9=

ω∞ λ
U∞
L

-------> µt∞ 10
2– µtmax< k∞

µt∞
ρ∞
--------ω∞=

k 0= and ω 10
6µ

βρ y1( ) 2
---------------------=
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Section 5. SST Two-Equation Model (Menter)

a. Model classification: 32011

Two-equation eddy viscosity model for incompressible/compressible turbulent flows with inte-
gration to the wall. Following Menter, this model is expressed in terms of a k-ω model formulation.

b. Summary

The k-ω SST shear-stress-transport model (refs. 7 and 12–14) combines several desirable ele-
ments of existing two-equation models. The two major features of this model are a zonal weighting of
model coefficients and a limitation on the growth of the eddy viscosity in rapidly strained flows. The
zonal modeling uses Wilcox’s k-ω model near solid walls and the standard k-ε model (in a k-ω formu-
lation) near boundary layer edges and in free-shear layers. This switching is achieved with a blending
function of the model coefficients. The shear stress transport modeling also modifies the eddy viscos-
ity by forcing the turbulent shear stress to be bounded by a constant times the turbulent kinetic energy
inside boundary layers (a realizability constraint). This modification improves the prediction of flows
with strong adverse pressure gradients and separation.

In order to blend the k-ω and the k-ε model, the latter is transformed into a k-ω formulation. The
differences between this formulation and the original k-ω model are that an additional cross-diffusion
term appears in the ω-equation and that the modeling constants are different. The original k-ω model
is then multiplied by a function F1 and the transformed k-ε model by a function (1 – F1) and the cor-
responding equations of each model are added together. The function F1 is designed to be a value of
one in the near wall region (activating the original model) and zero far from the wall. The blending
takes place in the wake region of the boundary layer. 

The SST model also modifies the turbulent eddy viscosity function to improve the prediction of
separated flows. Two-equation models generally underpredict the retardation and separation of the
boundary layer due to adverse pressure gradients. This is a serious deficiency, leading to an underesti-
mation of the effects of viscous-inviscid interaction which generally results in too optimistic perfor-
mance estimates for aerodynamic bodies. The reason for this deficiency is that two-equation models
do not account for the important effects of transport of the turbulent stresses. The Johnson-King
model (ref. 15) has demonstrated that significantly improved results can be obtained with algebraic
models by modeling the transport of the shear stress as being proportional to that of the turbulent
kinetic energy. A similar effect is achieved in the present model by a modification in the formulation
of the eddy viscosity using a blending function F2 in boundary layer flows.

c. Model equations

 The eddy viscosity is defined as the following function of the turbulent kinetic energy, k, and
specific dissipation rate or turbulent frequency, ω: 

    (5.1)

In turbulent boundary layers, the maximum value of the eddy viscosity is limited by forcing the tur-
bulent shear stress to be bounded by the turbulent kinetic energy times a1. This effect is achieved with
an auxiliary function F2 and the absolute value of the vorticity, Ω . The auxiliary function, F2, is
defined as a function of wall distance y as

µt
ρk ω⁄

max 1 ΩF2 a1ω( )⁄;[ ]
-------------------------------------------------------= a1 0.31=
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 (5.2)

The two transport equations of the model are defined below with a blending function F1 for the
model coefficients of the original ω and ε model equations. The transport equation for the turbulent
kinetic energy is

 (5.3)

and the transport equation for the specific dissipation of turbulence is

 (5.4)

where the last term of equation 5.4 represents the cross-diffusion term that appears in the transformed
ω-equation from the original ε-equation. The production term of ω is sometimes approximated as
proportional to the absolute value of vorticity (ref. 14):

 (5.5)

d. Model constants and parameters

The function F1 is designed to blend the model coefficients of the original k-ω model in bound-
ary layer zones with the transformed k-ε model in free-shear layer and freestream zones. This func-
tion takes the value of one on no-slip surfaces and near one over a large portion of the boundary layer,
and goes to zero at the boundary layer edge. This auxiliary blending function, F1, is defined as

    (5.6)

where CDkω stands for cross-diffusion in the k-ω model.

The constants of the SST model are

(5.7)

The model coefficients β, γ, σk, and σω denoted with the symbol φ are defined by blending the
coefficients of the original k-ω model, denoted as φ1, with those of the transformed k-ε model,
denoted as φ2.

  (5.8)

with the coefficients of the original models defined as

F2 max 2
k
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•  Inner model coefficients:

 (5.9)

•  Outer model coefficients:

 (5.10)

e. Boundary conditions

The boundary conditions of the k-ω SST model equations are the same as those described in sec-
tion 4 for the k-ω model.

f. Numerical implementation

The numerical implementation of the SST model equations is similar to the one described on
pages 10 and 11 for two-equation models. The implicit treatment of the source terms of the ω equa-
tion includes a factor of 2 for the dissipation term βρω2 due to the proportionality of this term to ω2.

The production term of ω written as a function of the absolute vorticity (see eq. 5.5) together
with a limiter on the production of turbulent kinetic energy, Pk, have been found to be beneficial
numerically in some cases (ref. 14). This procedure can help to prevent the unrealistic buildup of
eddy viscosity in the stagnation region of airfoils and can help to suppress numerical oscillations near
turbulent and nonturbulent interfaces. These effects have also been observed with other two-equation
models. The limiter recommended on the production of turbulent kinetic energy bounds the produc-
tion of turbulent kinetic energy to a value not larger than 20 times the dissipation of turbulent kinetic
energy.

σk1 0.85= σω1 0.5= β1 0.075=

γ1 β1 β∗⁄ σω1κ2 β∗⁄– 0.553= =

σk2 1.0= σω2 0.856= β2 0.0828=

γ2 β2 β∗⁄ σω2κ2 β∗⁄– 0.440= =
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Section 6. One-Equation Model (Spalart-Allmaras)

a. Model classification: 31011

One-equation eddy viscosity model for incompressible/compressible turbulent flows with inte-
gration to the wall.

b. Summary

The Spalart-Allmaras model (refs. 4, 8, and 9) is a relatively recent eddy viscosity model based
on a transport equation for the turbulent viscosity. This model was inspired from an earlier model
developed by Baldwin and Barth (ref. 16). Its formulation and coefficients were defined using dimen-
sional analysis, Galilean invariance, and selected empirical results. The empirical results used in its
development were two-dimensional (2-D) mixing layers, wakes, and flat-plate boundary layer flows.

The aim of this model is to improve the predictions obtained with algebraic mixing-length
models to develop a local model for complex flows, and to provide a simpler alternative to two-
equation turbulence models.

The model uses distance to the nearest wall in its formulation, and provides smooth laminar-
turbulent transition capabilities, provided that the location of the start of transition is given. It does
not require as fine a grid resolution in wall-bounded flows as two-equation turbulence models, and it
shows good convergence in simpler flows. 

The model does not give good predictions in jet flows, but gives reasonably good predictions of
2-D mixing layers, wake flows, and flat-plate boundary layers and shows improvements in the predic-
tion of flows with adverse pressure gradients compared with the k-ε and k-ω models, although not as
much as the SST model.

c. Model equations

 The eddy viscosity function is defined in terms of an eddy viscosity variable, , and a wall
function, fv1, as follows:

  (6.1)

In zones far from wall boundaries, the function fv1 is equal to one and .

The convective transport equation of the eddy viscosity is modeled as

     (6.2)

      (6.3)

where the right-hand-side terms represent turbulence eddy viscosity production, conservative diffu-
sion, nonconservative diffusion, near-wall turbulence destruction, transition damping of production,
and transition source of turbulence. The subscript b stands for “basic,” w stands for “wall,” v stands
for “viscous,” and t stands for “trip” (start of transition).

ν̃
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---
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∂x j
-------- ∂ν̃
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--------++=
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– f t1ρ∆U
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The model constants and auxiliary functions are defined in terms of the basic model for free-
shear flows, the wall model for boundary layers, the viscous model for integration to the wall, and the
transition model for laminar-turbulent transition.

The basic model constants for free-shear flows to control the production and diffusion of turbu-
lent eddy viscosity are

  (6.4)

The additional model constants and auxiliary functions for the destruction of turbulent eddy
viscosity in the boundary layer zone are 

 (6.5)

These auxiliary functions allow the model to predict the log layer, although the particular budget of
the Reynolds shear stress is not in quantitative agreement with experimental data.

Modeling functions and constants for the near wall flow regions are given by

(6.6)

The auxiliary functions and model constants to control the laminar region of the shear layers
and transition to turbulence are defined with a source term controlled with the function ft1 and a
reduction of production controlled with the function ft2. 

 (6.7)

where ωt is the vorticity at the boundary layer trip point, ∆U is the norm of the difference between the
velocity at the field point and the velocity at the trip point, ∆xt is the grid spacing along the wall at the
trip, and d is the distance from the wall.
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d. Boundary conditions

The ideal value of the freestream eddy viscosity variable is zero. Some solvers have trouble
with zero freestream values, and values smaller than ν/2 have been recommended. Small freestream
values are recommended for free-shear flows; otherwise, the solutions show freestream dependence
in velocity profiles and spreading rates. At wall boundaries the eddy viscosity is zero.

e. Numerical implementation

The numerical implementation of the Spalart-Allmaras model equations that we used here is
similar to the one described on pages 10 and 11 for two-equation models.
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Part C. Turbulent Free-Shear Flows

 

 

 

Summary

 

Turbulent free-shear flows are defined as turbulent flows not interacting with solid boundaries.
These flows provide a good balance for testing the predictive capability of models on diffusion effects
and calibration of model coefficients. Five turbulent free-shear flows are included in this study, and
the results of each flow are shown in the following sections:    

Four turbulence eddy viscosity models are validated for the prediction of these turbulent free-
shear flows. The four models included in the present study are the two-equation 

 

k

 

-

 

ω

 

 model of Wilcox
(ref. 4), the two-equation 

 

k

 

-

 

ε

 

 model of Launder and Sharma (refs. 5 and 6), the two-equation 

 

k

 

-

 

ω

 

 

 

SST

 

model of Menter (ref. 7), and the one-equation model of Spalart and Allmaras (

 

S-A

 

) (refs. 8 and 9).
These models and their equations are described in Part B of this report.

The validation of each model is mainly based on the ability of the models to predict the mean
velocity profile and spreading rate of each one of these fully developed free-shear flows. Differences
observed in the predictions of these flows may be explained in part because some of the model con-
stants have been defined or selected during the model development based on one of these flows. 

Sensitivity analyses of the validation results to freestream turbulence, grid resolution, and ini-
tial profiles are included in each section. In general, the results showed great sensitivity to grid resolu-
tion with all the turbulence models, and to freestream turbulence with some of the models. In
particular, the 

 

k

 

-

 

ω

 

 model showed large sensitivity to low freestream 

 

ω

 

 values, and the 

 

k

 

-

 

ε

 

 model
showed no sensitivity to low freestream 

 

ε

 

 values. The predictions of the shapes of nondimensional
mean velocity profiles and their spreading rates were insensitive to different initial profiles in each
flow beyond the initial development zone. The sensitivity of the results to numerical codes and
freestream Mach numbers used with compressible codes is also shown in section 7 for the incom-
pressible mixing layer. These results showed good consistency from flow to flow. 

 

Mathematical Formulation

 

The governing equations are the Navier-Stokes equations at high Reynolds numbers and are
described in Part A of this report. For self-similar free-shear flows, these equations can be reduced to
a simpler form through similarity transformations and the boundary layer approximation. The appen-
dix gives the self-similar free-shear flow equations and boundary conditions expressed in terms of
similarity coordinates. These equations were used to obtain most of the free-shear flow results shown
here. The agreement between Navier-Stokes and self-similar predictions is given in section 7 for the
incompressible mixing layer. 

Section 7. Mixing Layer

Section 8. Plane Jet

Section 9. Round Jet

Section 10. Plane Wake

Section 11. Compressible Mixing Layer
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 The boundary conditions imposed on the equations of motion are defined by the respective
states of the freestreams, and reflection conditions in symmetry planes of plane jets and axes of sym-
metry in round jets. Integral constraints based on the conservation of total momentum and the dis-
placement thickness of the layer were used for the jet and wake calculations, as described in
reference 4.

For the self-similar equations, the equations were solved in delta form using an implicit relax-
ation procedure until the residuals of the dependent variables converged to zero within computer
machine accuracy. The numerical method used to solve these equations was an implicit upwind algo-
rithm for the convective terms, second-order-implicit central differences for the diffusion terms, and
implicit treatment of the destruction source terms of the turbulence model equations. This method is
described further in the appendix. The solutions of these equations showed fast rate of convergence.
Very small and large values of freestream variables required upper and lower limiters in the eddy vis-
cosity during the transient relaxation time to achieve fast convergence.

 No significant differences were observed between results obtained with self-similar and
Navier-Stokes simulations with similar corresponding boundary conditions. However, different
freestream conditions are normally used with different methods. For example, self-similar calcula-
tions are usually done with fixed boundary conditions. Navier-Stokes simulations with the one-
equation model of Spalart and Allmaras are also normally done with fixed freestream states. On the
other hand, Navier-Stokes simulations with two-equation turbulence models normally produce a
decay of freestream turbulence, and this decay is inversely proportional to the freestream speed. This
difference is not an issue in models whose results are insensitive to freestream turbulence; for exam-
ple, the 

 

k

 

-

 

ε

 

 and the 

 

k

 

-

 

ω

 

 

 

SST

 

 models. However, the results of mean velocity profiles obtained with the

 

k

 

-

 

ω

 

 model are very sensitive to low values of freestream 

 

ω

 

, and 

 

ω

 

 decays rapidly in streams at rest.
Thus under these conditions the 

 

k

 

-

 

ω

 

 model can give different results for low freestream values of

 

ω

 

 using the self-similar equations and the Navier-Stokes equations. The results obtained with the
Spalart-Allmaras model are not sensitive to freestream turbulence, except for very large values of
freestream eddy viscosity, which may become an issue in complex flows.



 

22

 

Section 7. Mixing Layer

a. Introduction

 

Turbulent mixing layers are of considerable interest in engineering design and represent a
class of flows encountered in many aerodynamic applications (refs. 1–4 and 17). Mixing layer flows
are defined as the region between two parallel streams moving at different speeds. The self-preserving
properties of fully developed free-shear flows have been extensively used to validate model coeffi-
cients in almost all well-known turbulence models (ref. 4). Single phase, incompressible, fully devel-
oped turbulent mixing layer flows are considered fundamental flows in turbulence modeling. 

At high Reynolds numbers and far downstream of transition and initial effects, the mixing
layer develops an asymptotic equilibrium state. The analysis of the experimental data in the 1980–81
AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows (ref. 17) reported a spreading rate
of 0.115 for a fully developed mixing layer between stagnant and moving streams. The mean velocity
profile and its spreading rate are considered the most significant parameters in this flow.

 

b. Experimental data

 

Model validation requires a carefully selected set of experimental data, along with the proper
mathematical and numerical formulation of the governing equations of motion. Experimental data
reveal that even simple measurements have varied between different experiments in the initial zone of
development of the mixing layer. This zone is sensitive to initial conditions of flow structures of the
layer, boundary conditions imposed by the flow geometry, and Reynolds number effects. After the
mixing layer is fully developed, the available experimental data show a unique self-similar mean-
velocity profile with an asymptotic spreading rate value (refs. 17 and 18).

In the present study, the predictions are compared against the experimental data of Liepmann
and Laufer (ref. 19) where one freestream is at rest and the other freestream is moving at speed 

 

U

 

1

 

.
The experimental data are defined as 

 

η 

 

= 

 

y/x 

 

+ 0.007 and 

 

U/U

 

1

 

, where the data arrays are

 

y/x  

 

= [–0.180,  –0.176,  –0.160,  –0.150,  –0.147, –0.145,  –0.135, –0.132, –0.129, –0.126, –0.120,
          –0.116,  –0.115,  –0.113,  –0.113,  –0.106,   –0.102,  –0.100,  –0.097,  –0.095,  –0.092,  –0.089,
          –0.084,  –0.081,  –0.080, –0.077, –0.077, –0.069, –0.065, –0.065,  –0.063, –0.062, –0.053,
          –0.050,  –0.048, –0.044,  –0.040,  –0.036, –0.034, –0.033, –0.028,  –0.026,  –0.021,  –0.019,
         –0.017,  –0.016,  –0.010, –0.009, –0.005,  –0.004,  –0.002,    0.008,    0.011,   0.011,    0.015,
           0.021,    0.025,    0.027,    0.030,    0.033,    0.039,    0.042,   0.044,    0.045,    0.046,    0.054,
           0.057,    0.058,   0.062,   0.062,    0.069,     0.074,   0.078,   0.079,    0.081,    0.083,   0.090,
           0.094,    0.094,    0.096,    0.098,    0.106,     0.110,    0.113,   0.115,    0.118,    0.121,   0.126]

 

U/U

 

1 

 

= [0.015,   0.050,    0.055,   0.040,    0.040,    0.075,    0.055,    0.050,    0.075,   0.045,   0.060,
            0.060,   0.065,    0.055,    0.100,    0.075,    0.085,    0.088,    0.090,    0.125,   0.107,   0.105,
            0.114,   0.170,    0.145,    0.145,    0.137,    0.177,    0.195,    0.255,    0.220,   0.210,   0.245,
            0.300,   0.285,    0.295,    0.310,    0.335,    0.380,    0.350,    0.375,    0.390,   0.435,   0.437,
            0.450,   0.445,    0.475,    0.485,    0.515,    0.525,    0.530,    0.595,    0.622,   0.633,   0.635,
            0.670,   0.695,    0.715,    0.708,    0.748,    0.790,    0.815,    0.815,    0.825,   0.800,   0.865,
            0.885,   0.890,    0.865,    0.905,    0.923,    0.950,    0.920,    0.958,    0.970,   0.967,   0.980,
            0.960,   0.980,    0.980,    0.985,    0.990,    0.985,    0.990,    0.998,    1.000,   1.000,   0.995]
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The displacement of 0.007 is used to set the coordinate origin, 

 

η 

 

= 0, at the midpoint of the
mean velocity ratio profile, 

 

U/U

 

1∞

 

 = 1/2.

 

c. Results

 

The validation of the turbulence models for the prediction of the mean velocity profile and
spreading rate of the mixing layer is shown below. In order to ensure accuracy of the model predic-
tions, these calculations were performed by solving the nondimensional similarity equations
described in the appendix. A uniform distribution of 501 points was defined within the grid domain
–0.3 

 

≤

 

 

 

η ≡ 

 

y/x

 

 

 

≤

 

 0.2, the freestream value of the nondimensional turbulent kinetic energy was defined
as 

 

K

 

1 

 

≡ 

 

k

 

1

 

/

 

U

 

1
2

 

 = 10

 

–6 

 

(nearly zero) for the two-equation turbulence models, and the freestream value
of the nondimensional turbulent viscosity was varied from 10

 

–30

 

 

 

≤

 

 

 

N

 

 

 

≤ 

 

1. This was also the method
used to vary the freestream value of 

 

ω

 

 or 

 

ε

 

 for the two-equation turbulence models. The initial mean
velocity profile was defined as 

 

U/U

 

1

 

 = 0.5 + 0.5 tanh(10

 

η

 

). The coordinate 

 

x

 

 was defined as the
streamwise coordinate direction with its origin at the virtual origin of the self-similar flow, the coordi-
nate 

 

y

 

 was defined as the transverse coordinate direction, and 

 

U

 

1

 

 was defined as the freestream speed
of one boundary stream while the other freestream was set at rest. 

 

1) Velocity profiles

 

Figure 7.1 shows the comparison of the predictions of mean velocity profile 

 

U/U

 

1

 

 against

 

η = 

 

y/x

 

 and the experimental data of Liepmann and Laufer (ref. 5). The nondimensional coordinate 

 

η

 

was defined with its origin located where the mean velocity ratio was 1/2.

The results of the 

 

k

 

-

 

ε

 

 and 

 

k

 

-

 

ω

 

 

 

SST

 

 models are insensitive to freestream turbulence and show
good agreement in the middle of the mixing zone and sharp edge profiles at the boundaries. The small
difference between the predictions of these two models near the edge of the freestream at rest is due
to the different value of their diffusion model constant, 

 

σ

 

ε

 

. The results of the Spalart-Allmaras model
show very good agreement with the experimental data, but show a wider mean velocity profile with
very large values of freestream eddy viscosity (10

 

–3

 

 

 

≤ 

 

N

 

1 

 

≡ ν

 

t

 

/

 

U

 

1

 

x

 

; see fig. 7.2). In practice, these
large values of dimensionless eddy viscosity are much larger than the molecular viscosity, and the
errors can be controlled by limiting the eddy viscosity in the freestream, (

 

µ

 

t

 

/µ

 

l

 

 

 

≤ 

 

10

 

–3

 

Re

 

∞

 

). The 

 

k

 

-

 

ω

 

model shows two different results of mean velocity profiles, one for low values and another for high
values of freestream 

 

ω
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The profiles show significant underprediction in the low-speed side and overprediction in the high-
speed side of the mixing layer with low freestream 

 

ω, (

 

W 

 

≤ 

 

10

 

–2

 

), and underprediction in the higher
speed side with high freestream 

 

ω, (

 

W ≥ 10).

2) Spreading rates

 The spreading rate provides an estimate of the width of the mixing region and is considered
one of the most significant parameters that turbulence models attempt to predict with accuracy. The
spreading rate was defined as the distance between the points of the nondimensional variable η in the
mean velocity profile where the square of the nondimensional mean velocity ratio is 0.9 and 0.1,
respectively. This definition of spreading rate is one of several formulations that have been proposed
in the literature to measure the spreading rate. The main shortcoming of this definition is reported to
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be the large differences that the models predict near the edge zones of the mixing layer (refs. 17
and 18). The main advantage of this definition is its widespread use in turbulence modeling (refs. 17
and 18).

The following table reports the spreading rate values obtained with the turbulence models and
the recommended experimental value. It is to be noted that the experimental value of 0.115 shows an
uncertainty of about ±10%.        

The range of values reported for the k-ω model is due to the effects of low and high freestream ω
values. These effects are shown in detail in the following paragraphs and in figure 7.2.

d. Sensitivity analyses

1) Freestream turbulence sensitivity study

Figure 7.2 shows the spreading rates predicted with different freestream values of eddy vis-
cosity, N ≡ νt/U1x = 10–n. For each turbulence model, a set of simulations was done with different
values of the exponent n within the range of –13 ≤ n ≤ 0. A uniform distribution of 501 points was
defined within the grid domain –0.3 ≤ η = y/x ≤ 0.2 in all these simulations, except for the Spalart-
Allmaras model for very large values of freestream eddy viscosity where the grid range was increased
up to –5 ≤ η = y/x ≤ 4 for N = 1. 

The predictions of the spreading rate, velocity profile, and eddy viscosity profile with the k-ε
and k-ω SST models are quite insensitive to freestream turbulence. The k-ω model predictions show a
strong sensitivity to freestream turbulence. Large values of freestream ω give a spreading rate of
0.068 and small values of freestream ω give a spreading rate of 0.143. These results are consistent
with the far wake predictions presented by Menter (ref. 12) in his discussion over the sensitivity of
the k-ω model to freestream conditions. The one-equation model of Spalart-Allmaras shows no sensi-
tivity to freestream turbulence and gives a spreading rate of 0.109 with N ≤ 10–5. For very large
freestream eddy viscosity, it predicts larger values up to 1.61 with a nondimensional eddy viscosity of
N = 1.

2) Grid resolution sensitivity study

A grid sensitivity study for each model was made to provide an estimate of the resolution
needed to capture an accurate solution and is shown in figure 7.3. The computations were performed
with 50, 100, 150, 300, 500, and 1000 points with a uniform distribution inside the grid domain

Mixing layer Spreading rate

Experiment 0.115

Launder-Sharma k-ε model 0.099

Wilcox k-ω model 0.068–0.143

Menter SST model 0.100

Spalart-Allmaras model 0.109
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–0.3 ≤ η ≤ 0.2. The freestream values of the turbulent kinetic energy and eddy viscosity were set
equal to K1 = 10–6 and N1 = 10–8, respectively. The results are presented based on the percent error of
spreading rate with respect to the solution obtained using 1000 grid points. In general, the results
show that errors can be controlled within less than 3% if 100 grid points are used in the calculations
of the mixing layer with the k-ε and the k-ω SST models. The S-A model shows a smaller sensitivity to
grid resolution, while the k-ω model shows a much larger sensitivity to grid resolution.

3) Initial conditions sensitivity study

The models all appeared to show zero sensitivity to different initial profiles, as expected from
the usual concept of self-similar profiles. For example, the following table shows the spreading rates
with the same six significant figures computed with two different initial velocity profiles, a step func-
tion and a hyperbolic tangent profile defined as U/U1 = 0.5 + 0.5 tanh(10η).   

4) Code sensitivity and Mach number sensitivity study

A study of code independence is needed to demonstrate that an accurate solution can be
obtained independent of the numerical code—even among codes involving different physical simpli-
fications, such as full Navier-Stokes methods, boundary layer approximations, self-similar
approaches, and incompressible versus compressible codes. Five codes with three different numerical
methods were used in this study: three self-similar equilibrium method (SSE), one incompressible
Navier-Stokes method (INS) (ref. 20), and one compressible Navier-Stokes methods (CNS) (ref. 21).
The “standard” solutions for each code were established following the guidelines illustrated in the
current section. Figure 7.4 shows the comparison of the results using the one-equation Spalart-
Allmaras turbulence model (S-A). The mean velocity profiles are similar and code-independent. No
significant differences were found in the predictions obtained with the five different numerical codes;
they all show similar predictions. The self-similar solutions show similar results with 102, 200, and
500 grid points. The incompressible Navier-Stokes solution obtained with the INS2D code used
101 grid points. 

The effect of the freestream Mach number is presented for the benefit of users of compressible
Navier-Stokes codes. The comparison in figure 7.4 of the velocity profiles using M1 = 0.5 with the
compressible Navier-Stokes code, the incompressible Navier-Stokes code, and the three self-similar
equilibrium approximations for the incompressible mixing layer using M1 = 0 showed no significant
differences. One SSE predicted a spreading rate about 2% less than the consensus of the other incom-
pressible methods, and the CNS prediction was only 3.7% low even at M1 = 0.5.  These differences
are much smaller than the 10% observed in the experimental data. Simulations based on Navier-
Stokes codes should make sure to determine the self-similar state independent of initial conditions,
and should define the virtual origin of the mixing layer based on the flow region where the spreading
rate becomes a linear function of the streamwise distance.    

Initial\model k-ε k-ω SST S-A

tanh/step function 0.098594 0.067572 0.100237 0.108637
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Section 8. Plane Jet

a. Introduction

Turbulent plane jets or nearly plane jets are of great interest in engineering design (refs. 3, 4,
22, and 23). Experimental results show that the jet develops an asymptotic nondimensional profile at
high Reynolds numbers and far downstream of transition and initial development effects. The experi-
mental data of Bradbury (ref. 23) shows a spreading rate value between 0.10 and 0.11 for a fully
developed plane jet. Similar to the other free-shear flows, the mean velocity profile and its spreading
rate are considered the most significant parameters for turbulence model predictions.

b. Experimental data

In the present study, the predictions of the turbulence models are compared against the exper-
imental data of Bradbury (ref. 23), whose nondimensional mean velocity profile is

   y/x = [0.000,  0.009,  0.018,  0.026,  0.034,  0.035,  0.044,  0.053,  0.061,  0.062,  0.070,  0.079,
             0.088,  0.096,  0.097,  0.106,  0.110,  0.110,  0.114,  0.123,  0.123,  0.132,  0.141,  0.142,
             0.150,  0.158,  0.167,  0.169,  0.176,  0.185,  0.188,  0.194,  0.202,  0.211,  0.220]

U/U1 = [1.000,  0.996,  0.983,  0.962,  0.916,  0.933,  0.898,  0.856,  0.784,  0.809,  0.758,  0.703,
              0.646,  0.553,  0.588,  0.529,  0.500,  0.468,  0.471,  0.400,  0.414,  0.358,  0.305,  0.284,
              0.256,  0.210,  0.168,  0.174,  0.131,  0.099,  0.084,  0.072,  0.050,  0.033,  0.020]

where the mean speed of one freestream is U1 and the other freestream is at rest, x is the streamwise
coordinate direction and y is the transversal coordinate direction, and the center of coordinates is
located at the virtual origin of the self-similar flow.

c. Results

The validation metrics of the turbulence models for the prediction of the mean velocity profile
and spreading rate of the plane jet are shown below. Consistent with the mixing layer simulations,
these calculations were performed by solving the nondimensional similarity equations described in
the appendix, achieving fast convergence to machine accuracy. The freestream value of the nondi-
mensional turbulent kinetic energy was also defined as K1 ≡ k1/U1

2 = 10–6 (nearly zero) for the two-
equation turbulence models, and the nondimensional freestream turbulent viscosity was varied within
the range 10–15 ≤ N ≤ 1. A uniform distribution of 150 points was defined inside the grid domain
within 0 ≤ η ≡ y/x ≤ 0.35 for the k-ε, the k-ω SST, and the k-ω models. The number of grid points and
the domain were increased to 300 and η ≤ 0.7 for the k-ω model with low freestream W ≡ ωx/U1 ≤ 1.
The predictions with the Spalart-Allmaras model also used 300 grid points uniformly distributed
within η ≤ 0.7 for freestream eddy viscosities N ≤ 10–2, and used 600 grid points and  ηmax = 1.4 for
N = 0.1, and 1000 grid points and ηmax = 6 for N = 1, respectively. The initial mean velocity profile
was defined as  U/U1 = exp(–81η2). The coordinate x was defined as the streamwise coordinate direc-
tion with its origin at the virtual origin of the self-similar flow, the coordinate y was defined as the
transverse coordinate direction, U1 was defined as the mean speed of one freestream, and the other
freestream was set at rest. 
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1) Velocity profiles

Figure 8.1 shows the comparison of the mean velocity profiles U/U1 against η ≡ y/x and the
experimental data of Bradbury (ref. 23). The k-ω SST model profile gives excellent agreement with
the experimental data and is also insensitive to low freestream values of ω. The profile of the k-ε
model is very similar, except near the freestream at rest, and is insensitive to low freestream values of
ε. The small difference between the predictions of these two models is due to the different value of
their diffusion model constant, σε. The Spalart-Allmaras model overpredicts the mean velocity profile
thickness; the results are insensitive to freestream eddy viscosity for N ≡ νt/U1x ≤ 10–3. Results with
larger freestream eddy viscosities give much larger overpredictions and are not shown in figure 8.1. In
practice, these errors can be controlled by limiting the values of the eddy viscosity in the freestream,
(µt/µl ≤ 10–3 Re∞). The results of the k-ω model show two predictions; one largely overpredicts and
the other underpredicts the thickness of the mean velocity profile, corresponding to low and high
freestream W ≡ ωx/U1 values, (W ≤ 10–4 and W ≥ 103), respectively. This model gives a set of inter-
mediate solutions (not shown in fig. 8.1) depending on the values of freestream ω, (10–4 ≤ W ≤ 103).

2) Spreading rates

The spreading rate S is defined as the distance of the nondimensional coordinate η ≡ y/x
between the centerline and the freestream, where the nondimensional velocity is U/U1 = 1 and
U/U1 = 1/2, respectively. This definition of spreading rate is one of several formulations that have
been proposed.

The following table gives the spreading rate values obtained with the turbulence models and
the recommended experimental value. The range of experimental values is reported between 0.10 and
0.11 and is given only as reference values.        

The k-ε and the k-ω SST models give close prediction of the experimental spreading rate, while the
Spalart-Allmaras model overpredicts the spreading rate. The k-ω model predicts a range of values due
to the effects of low and high freestream ω. These effects are further discussed in the following
paragraphs.

Plane jet Spreading rate

Experiment 0.100–0.110

Launder-Sharma k-ε model 0.108

Wilcox k-ω model 0.092–0.132

Menter SST model 0.112

Spalart-Allmaras model 0.143
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d. Sensitivity analyses

1) Freestream turbulence sensitivity study

Figure 8.2 shows the sensitivity of the spreading rates predicted with different freestream
values of eddy viscosity, N ≡ νt/U1x = 10–n, and the values of the exponent n was varied within
–15 ≤ n ≤ 0. The sensitivity of the spreading rate to freestream turbulence is similar in all free-shear
flows. The results with the k-ε and k-ω SST models are insensitive to low freestream values of ε or ω,
respectively. The k-ω model shows a strong sensitivity to freestream ω. Large values of freestream ω
give a spreading rate of 0.092, small values of freestream ω give a spreading rate of 0.132, and inter-
mediate values are predicted in between these two limits. The one-equation model of Spalart-
Allmaras shows no sensitivity to freestream turbulence with N ≤ 10–5 and gives a larger spreading
rate of 0.143; even larger values are predicted with greater nondimensional freestream eddy viscosity
of values. 

2) Grid sensitivity study 

A grid sensitivity study for each model was done to provide an estimation of the resolution
needed to capture an accurate solution. The computations were performed with 50, 100, 150, 300,
500, and 1000 points with a uniform distribution inside the grid domain 0 ≤ η ≤ ηmax. The value of
ηmax = 0.35 was defined for the k-ε, SST, and k-ω models, and the value of ηmax = 0.7 was defined for
the S-A model. The freestream values of the turbulent kinetic energy and eddy viscosity were set
equal to K1 = 10–6 and N1 = 10–8, respectively. The results are presented based on the percent error
with respect to the solution obtained using 1000 grid points. Figure 8.3 shows the sensitivity of the
model solutions to the number of grid points used in these calculations. In general, errors can be con-
trolled within less than 2% with 50 through 1000 grid points used in the calculations, except for the
k-ω model when the number of grid points inside the boundary layer is less than 200. 

3) Initial conditions sensitivity study

The predictions of the different models showed zero sensitivity to the initial profiles.    
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Section 9. Round Jet

a. Introduction

Turbulent round or axisymmetric jets are encountered in many aerospace flows (refs. 3, 4, 22,
and 24). At high Reynolds numbers and far downstream of transition and initial development effects,
the round jet develops an asymptotic equilibrium state. The analysis of the experimental data of Wyg-
nanski and Fiedler (ref. 24) shows a spreading rate value between 0.086 and 0.095 for a fully devel-
oped round jet. Similar to other free-shear flows, the mean velocity profile and its spreading rate are
considered to be the most significant parameters in turbulence model predictions.

b. Experimental data

In the present study, the predictions of the turbulence models are compared with the experi-
mental data of Wygnanski and Fiedler (ref. 24) whose nondimensional mean velocity profile is

   y/x = [0.000,  0.004,  0.005,  0.007,  0.009,  0.015,  0.017,  0.017,  0.019,  0.029,  0.029,  0.030,
            0.032,  0.036,  0.038,  0.042,  0.042,  0.049,  0.049,  0.054,  0.058,  0.060,  0.064,  0.066,
            0.068,  0.068,  0.076,  0.078,  0.080,  0.081,  0.087,  0.088,  0.096,  0.097,  0.099,  0.102,
            0.107,  0.114,  0.115,  0.118,  0.125,  0.128,  0.131,  0.134,  0.137,  0.137,  0.144,  0.145,
            0.149,  0.154,  0.160,  0.161,  0.163,  0.173,  0.176,  0.182,  0.185,  0.192,  0.192,  0.197,
            0.210]

U/U1 = [1.000,  0.995,  0.991,  0.989,  0.984,  0.977,  0.973,  0.961,  0.973,  0.918,  0.909,  0.893,
            0.900,  0.850,  0.855,  0.832,  0.809,  0.791,  0.775,  0.739,  0.727,  0.700,  0.700,  0.636,
            0.641,  0.623,  0.559,  0.555,  0.550,  0.532,  0.500,  0.486,  0.432,  0.439,  0.432,  0.405,
            0.375,  0.332,  0.314,  0.300,  0.268,  0.255,  0.241,  0.214,  0.218,  0.205,  0.182,  0.182,
            0.145,  0.136,  0.109,  0.114,  0.109,  0.082,  0.073,  0.073,  0.055,  0.050,  0.041,  0.045,
            0.027]

where the centerline speed of the jet is U1 and the freestream is at rest, x is the streamwise coordinate
direction and y is the transversal coordinate direction, and the center of coordinates is located at the
virtual origin of the self-similar flow.

c. Results

The validation of the turbulence models for the prediction of the mean velocity profile and
spreading rate of the round jet is shown below. Consistent with the mixing layer simulations, these
calculations were performed by solving the nondimensional similarity equations described in the
appendix, achieving fast convergence to machine accuracy. A uniform distribution of 300 grid points
was defined in the domain 0 ≤ η ≡ y/x ≤ 7/10. The freestream value of the nondimensional turbulent
kinetic energy was also defined as K1 ≡ k1/U1

2 = 10–6 (nearly zero) for the two-equation turbulence
models, and the nondimensional freestream turbulent viscosity was varied from 10–15 ≤ N ≤ 1 for all
the models. The number of grid points and the radial jet distance were increased with the k-ω and the
Spalart-Allmaras models for large values of freestream eddy viscosity due to freestream sensitivity,
600 grid points and ηmax = 1.4 for N = 0.1 and 1000 grid points and ηmax = 6 for N = 1. The initial
mean velocity profile was defined as U/U1 = 1.0 – tanh(10η). The coordinate x was defined as the
streamwise coordinate direction with its origin at the virtual origin of the self-similar flow, the
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coordinate y was defined as the transverse coordinate direction with its origin at the center of the jet,
U1 was defined as the centerline mean speed of the jet, and the freestream was set at rest. 

1) Velocity profiles

Figure 9.1 shows the comparison of the predictions of mean velocity profile U/U1 against
η = y/x and the experimental data of Wygnanski and Fiedler (ref. 4). All the models overpredict the
thickness of the experimental mean velocity profile. This classical anomaly is well known in these
models that have been fine-tuned with empirical data of mixing layer, plane jet, and/or far wake
experiments.

The results of the k-ε and k-ω SST models are closer to the experimental data and are also
insensitive to low freestream values of ε or ω, respectively. The small difference between the predic-
tions of these two models near the edge of the freestream is also due to the different value of their dif-
fusion model constant, σε. The Spalart-Allmaras model gives a considerably larger overprediction of
the mean velocity profile thickness, and the results are insensitive to freestream eddy viscosity for
N ≡ νt/U1x ≤ 10–3. Results with larger freestream eddy viscosities give much larger overpredictions
and are not shown in figure 9.1. In practice, these large values of dimensionless eddy viscosity are
much larger than the molecular viscosity, and the errors can be controlled by limiting the eddy viscos-
ity in the freestream, (µt/µl ≤ 10–3 Re∞). The results of the k-ω model show two overpredictions of the
thickness of the mean velocity profile, corresponding to low and high freestream W ≡ ωx/U1x values,
(W ≤ 10–4 and W ≥ 104), and a set of intermediate solutions (not shown in fig. 9.1) depending on the
values of freestream ω, (10–4 ≤ W ≤ 104).

2) Spreading rate

 The spreading rate is defined as the value of the nondimensional jet radius, S = y/(x – xo),
where the mean speed is half its centerline value. This definition of spreading rate is one of several
formulations that have been proposed. The spreading rate provides an estimate of the thickness of the
round jet and is widely used in turbulence modeling. However, it is only one parameter and it does not
provide information about the shape of the velocity profile.

The following table reports the spreading rate obtained with the turbulence models and the
recommended experimental value. The range of experimental values is between 0.086 and 0.095.        

All models overpredict the spreading rate. The range of values reported for the k-ω model is due to
the effects of low and high freestream ω values.

Round jet Spreading rate

Experiment 0.086–0.095

Launder-Sharma k-ε model 0.120

Wilcox k-ω model 0.169–0.356

Menter SST model 0.127

Spalart-Allmaras model 0.253
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d. Sensitivity analyses

1) Freestream turbulence sensitivity study

Figure 9.2 shows the sensitivity of the spreading rates predicted with different freestream val-
ues of eddy viscosity, N ≡ νt/U1x = 10–n, and the values of the exponent n was varied within
–15 ≤ n ≤ 0. A uniform distribution of 300 grid points inside the domain 0 ≤ η = y/x ≤ 0.7 was set in
all these simulations, except for the models with large freestream sensitivity (see fig. 9.1). 

For a given model, the sensitivity of the spreading rate to freestream turbulence is similar in
all freeshear flows. The results with the k-ε and k-ω SST models are insensitive to low freestream val-
ues of ε or ω, respectively. The k-ω model shows a strong sensitivity to freestream ω, large values of
freestream ω give a spreading rate of 0.068, small values of freestream ω give a spreading rate of
0.143, and intermediate values are predicted in between these two limits. The one-equation model of
Spalart-Allmaras shows no sensitivity to freestream turbulence with N ≤ 10–5 and gives a spreading
rate of 0.109, but larger values are predicted with very large freestream eddy viscosity values,
N > 10–3; in other words, when µt/µl > 10–3 Rex∞.

2) Grid sensitivity study 

Figure 9.3 shows a grid sensitivity study for each model, which provides an estimate of the
resolution needed to capture an accurate solution. The computations were performed with 50, 100,
150, 300, 500, and 1000 grid points with a uniform distribution inside the domain 0 ≤ η ≤ ηmax,
where  ηmax = 0.35 except for the Spalart-Allmaras model where ηmax = 0.70. The freestream values
of the turbulent kinetic energy and eddy viscosity were set equal to K1 = 10–6 and N1 = 10–8, respec-
tively. The results are presented based on the percent error with respect to the spreading rate obtained
with 1000 grid points. In general, errors can be controlled within less than 2% with 50 through 1000
grid points used in the calculations. 

3) Initial conditions sensitivity study

Similar to the results of other free-shear flows, all the models showed zero sensitivity to dif-
ferent initial profiles. 
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Section 10. Plane Wake

a. Introduction

Turbulent plane wakes are encountered in many aerodynamic flows (figs. 3, 4, 22, 25, and 26).
Similar to other free-shear flows, experimental results show that the wake develops an asymptotic
nondimensional profile far downstream of transition and initial development effects. For turbulence
modeling, the mean velocity profile and its spreading rate are also considered the most significant
parameters. The analysis of the experimental data of Fage and Falkner (ref. 25) shows an spreading
rate of 0.365 for a fully developed plane wake.

b. Experimental data

In the present study, the predictions are compared against the experimental data of Fage and
Falkner (ref. 25) whose mean velocity profile is defined as 

                                 η = [0.101,  0.109,  0.118,  0.139,  0.214,  0.221,  0.231,  0.252,  0.331,  0.335,
                                   0.344,  0.373,  0.444,  0.452,  0.456,  0.489,  0.556,  0.568,  0.609,  0.669,
                                   0.669,  0.688,  0.730,  0.737,  0.778]

(U – Umin)/(U∞ – Umin) = [0.923,  0.928,  0.916,  0.899,  0.725,  0.715,  0.686,  0.719,  0.479,  0.467,
                                    0.481,  0.444,  0.323,  0.290,  0.300,  0.243,  0.150,  0.145,  0.107,  0.075,
                                    0.052,  0.044,  0.030,  0.020,  0.014]

where η = y(ρU∞/Dx)1/2 and (U – Umin)/(U∞ – Umin), the centerline speed of the wake is Umin, the
mean speed of both freestreams is U∞, x is the streamwise coordinate direction with its origin at the
virtual origin of the self-similar flow and y is the transversal coordinate direction, ρ is the fluid den-
sity, and D is the total wake drag or momentum deficit (integrated over the full wake width).

c. Results

The validation metrics of the turbulence models for the prediction of the mean velocity profile
and spreading rate of the far wake are shown below. Consistent with the mixing layer simulations,
these calculations were performed by solving the nondimensional similarity equations described in
the appendix, achieving fast convergence to machine accuracy. The freestream value of the nondi-
mensional turbulent kinetic energy was also defined as K1 ≡ k1/U1

2 = 10–6 (nearly zero) for the two-
equation turbulence models, and the nondimensional freestream turbulent viscosity was varied within
the domain 10–15 ≤ N ≤ 1. Based on the predicted spreading rate of the mean velocity profile, a uni-
form distribution of 300 grid points was defined in the domain 0 ≤ η ≤ 2 to simulate flows with high
freestream eddy viscosity, N ≥ 0.01, and 150 grid points within the domain 0 ≤ η ≤ 1 to simulate
flows with lower freestream eddy viscosity. The initial mean velocity profile was defined as the fol-
lowing exponential function (U – Umin)/(U∞ – Umin) = exp(–2η2). See reference 4 for details on using
the displacement thickness as an integral constraint in computing the mean velocity profile.
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1) Velocity profiles

Figure 10.1 shows the mean velocity profiles (U – Umin)/(U∞ – Umin) versus the nondimen-
sional coordinate η = y(ρU∞/Dx)1/2 compared with the experimental data of Fage and Falkner
(ref. 25). The k-ε and k-ω SST models give thinner profiles than experiment and are insensitive to low
freestream values of ε or ω, respectively. The small difference between the predictions of these two
models near the freestream is due to the different value of their diffusion model constant, σε. The
Spalart-Allmaras model gives best agreement with the experimental profile, and the results are insen-
sitive to freestream eddy viscosity for N ≡ νt/U∞x ≤ 10–4. Results with much larger freestream eddy
viscosities give overpredictions and are not shown in figure 10.1; in practice, these errors can be con-
trolled by limiting the eddy viscosity in the freestream, (µt/µl ≤ 10–3 Re∞). The results of the k-ω
model show two predictions; one largely overpredicts and the other underpredicts the thickness of the
mean velocity profile, corresponding to low and high freestream W ≡ ωx/U∞ values, (W ≤ 10–4 and
W ≥ 103), respectively. This model gives a set of intermediate solutions (not shown in fig. 10.1)
depending on the intermediate values of freestream ω, (10–4 ≤ W ≤ 103).

2) Spreading rate

 The spreading rate S is defined as the difference S = η0.5 – η0 of the nondimensional coordi-
nate η between the points where the nondimensional mean speed is one half and zero, respectively.
This definition of spreading rate is one of several formulations that have been proposed and it is
widely used in turbulence modeling.

The following table reports the spreading rate obtained with the turbulence models and the
recommended experimental value 0.365 of Fage and Falkner (ref. 25).         

The k-ε and the k-ω SST models underpredict the experimental spreading rate by 30%, while the
Spalart-Allmaras model gives a value much closer to the experimental spreading rate (7%). The
k-ω model predicts a range of values due to the effects of low and high freestream ω, within an under-
prediction of 43% and an overprediction of 35%.

Far wake Spreading rate

Experiment 0.365

Launder-Sharma k-ε model 0.255

Wilcox k-ω model 0.209–0.494

Menter SST model 0.257–0.260

Spalart-Allmaras model 0.339
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d. Sensitivity analyses

1) Freestream turbulence sensitivity study

Figure 10.2 shows the sensitivity of the spreading rates predicted with different freestream
values of eddy viscosity, N ≡ νt/U1x = 10–n, and the values of the exponent n was varied within
–10 ≤ n ≤ 0. The results with the k-ε and k-ω SST models are insensitive to low freestream values of ε
or ω, respectively. The k-ω model shows a strong sensitivity to freestream ω, large values of
freestream ω give a spreading rate of 0.209, small values of freestream ω give a spreading rate of
0.494, and intermediate values are predicted in between these two limits. The one-equation model of
Spalart-Allmaras shows no sensitivity to freestream turbulence with N ≤ 10–4 and predicts a spread-
ing rate of 0.339, which gives best agreement with experiment. 

2) Grid sensitivity study 

A grid sensitivity study for each model is recommended to provide an estimation of the reso-
lution needed to capture an accurate solution. The computations were performed with 50, 100, 150,
300, 500, and 1000 grid points with a uniform distribution inside the domain 0 ≤ η ≤ ηmax. The value
of ηmax = 1, freestream turbulent kinetic energy K∞ = 10–6, and freestream eddy viscosity N∞ = 10–8

were defined for all the models.   Figure 10.3 shows the sensitivity of the model solutions to the num-
ber of grid points used in the calculations. The results are reported based on the percent error with
respect to the solution obtained using 1000 grid points. Figure 10.3 shows the sensitivity of the model
solutions to the number of grid points used in the calculations. In general, errors can be controlled
within less than 2% with 50 through 1000 grid points used in the calculations, except for the
k-ω model when the minimum number of grid points is about 400. 

3) Initial conditions sensitivity study

The predictions of the different models showed zero sensitivity to the initial profiles. 
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Section 11. Compressible Mixing Layer

a. Introduction

The compressible turbulent mixing layer is present in many aerodynamic flows and is of con-
siderable interest in engineering design. It is a fundamental flow for studying compressibility effects
in the modeling of turbulence (refs. 18 and 27–29). At high Reynolds numbers and far downstream of
transition and initial condition effects, the mixing layer develops an asymptotic equilibrium state. The
analysis of the experimental data in the Free Turbulent Shear Flow conference held at NASA Langley
Research Center was reported by Birch and Eggers (refs. 18 and 28) and shows a decrease of the
spreading rate with increasing convective Mach number; these data are known as the “Langley
curve.” The spreading rate and the shape of the mean velocity profile are considered significant
parameters for prediction.

b. Experimental data

Model validation requires a careful comparison of predictions and experimental data and a
proper mathematical and numerical formulation of the governing equations. Experimental data reveal
that the initial development of the mixing layer is sensitive to initial conditions of flow structures,
boundary conditions imposed by flow geometry, and Reynolds number effects. In the later develop-
ment or far field, the available experimental data for fully developed mixing layer flows at high Rey-
nolds numbers show a unique self-similar profile with an asymptotic spreading rate (refs. 28 and 29).

The experimental results of Samimy and Elliot on mean velocity profiles show the self-similar
profiles of the mixing layer. These experimental results are compiled and tabulated in the database of
Settles and Dodson (ref. 29) in a study of 45 experiments on free-shear flows.

The experimental results of spreading rate show a decrease of the thickness of the mixing
layer with increasing convective Mach number, Mc.  Mc = (U1 – U2)/(a1 + a2) is defined in terms of
the mean velocity, U, and the sound speed, a, in each freestream. Experimental data are available with
different freestream velocities in the low- and high-speed sides of the mixing layer, and with constant
total or static temperature. The compilation of different experimental results with the low-speed
freestream at rest and constant total temperature are represented by the “Langley data” with high
speed freestream Mach number M1 and spreading rate S as

M1 = [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]

S = [0.115,  0.115, 0.1106, 0.08275, 0.0632, 0.05182, 
         0.0446, 0.04052, 0.03798, 0.03563, 0.03395] 

For perfect gases with constant pressure and total temperature, the corresponding convective Mach
numbers are 

           Mc = [0,   0.247,   0.477,   0.681,   0.854,   1.000,   1.122,   1.225,   1.312,   1.386,   1.450] 

and the convective Mach number reduces to Mc = (U1 – U2)/(a1 + a2) = (M1R – M2)/(R + 1) where
R2 = ρ2/ρ1 and R2 = [1 + 0.5(γ – 1)M2

2]/[1 + 0.5(γ – 1)M1
2]. The spreading rate S is defined based on

the energy thickness definition of Birch and Eggers (ref. 28) as the difference between the values of
y/x where (U – U2)2/(U1 – U2)2 is 9/10 and 1/10.
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The experimental results of Liepmann and Laufer (ref. 19) for the mixing layer of an incom-
pressible fluid are reported in section 8 and are also used here as reference data.

c. Results

The validation results of the turbulence models for the prediction of the mean velocity profile
and spreading rate of the compressible mixing layer are shown below. In the present simulations, a
uniform distribution of 501 grid points was defined within the domain –0.3 ≤ η = y/x ≤ 0.2, where x is
the streamwise coordinate direction with its origin at the virtual origin of the self-similar flow, and y is
the transverse coordinate direction. The nondimensional mean variables U, M, a, K, and N denote
mean velocity, Mach number, sound speed, turbulent kinetic energy, and eddy viscosity, respectively.
The subscripts 1 and 2 stand for the high- and low-speed side of the freestreams, respectively. The
freestream value of the nondimensional turbulent kinetic energy was defined as K1 ≡ k1/U1

2 = 10–6

(nearly zero) for the two-equation turbulence models. The freestream value of the nondimensional
turbulent viscosity was varied between 10–15 ≤ N ≡ νt/(U1x) ≤ 1 for freestream analysis or was set
equal to N = 10–9 (also nearly zero) for analysis with constant freestream conditions. The convective
Mach number Mc was varied between the range 0 and 6.5, and the freestream velocity in the low-
speed side was set equal to zero, U2 = 0. The initial velocity profile ratio was defined as
U/U1 = 0.5(1.0 + tanh(10η)). 

1) Velocity profiles

Figure 11.1 shows the comparison between the predictions of the nondimensional mean
velocity profile (U – U2)/(U1 – U2) of the mixing layer using the standard turbulence models and the
experimental data of Samimy and Elliot against the coordinate (η – η0.5)/δω. This particular coordi-
nate system is used in order to show all the data in a simpler plot. The nondimensional coordinate
η ≡ y/x, the coordinate η0.5 represents the point where the nondimensional speed is 0.5, and δω is the
vorticity thickness of the mixing layer where δω = (U1 – U2)/(dU/dη)max. The experimental data are
shown with convective Mach numbers of Mc = 0.51, 0.64, and 0.86. The experimental data of Liep-
mann and Laufer (ref. 19) for the incompressible mixing layer, Mc = 0, is also shown in this figure as
a reference. The numerical predictions with the four different turbulence models were obtained over
a wide range of convective Mach numbers, and figure 11.1 shows the predictions with Mc = 0, 0.8,
and 1.6. The vertical arrows indicate the trend of the predictions with increasing convective Mach
number. 

   All velocity profiles show some degree of agreement with the experimental data due to the
particular coordinate system of the plot. These plot coordinates bound the range and collapse all data
at the midpoint. The results of the k-ε and k-ω SST models show good agreement with the nondimen-
sional shape of the experimental profile. The results of the Spalart-Allmaras model also show good
agreement with the experimental data, except for very high freestream eddy viscosity. The mean
velocity profiles of the k-ω model show sensitivity to low freestream ω values. The relative good
agreement of prediction with data is due to the use of δω in the nondimensional plots. The dimen-
sional profiles and spreading rates show a much stronger dependence on Mach number, as will be
seen in subsection d.
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2) Spreading rate

In the self-similar region, the thickness of the mixing layer grows linearly with downstream
distance and the spreading rate is constant. In Navier-Stokes simulations with Cartesian coordinate
systems, (x,y), the spreading rate S is defined as dδ/dx where δ(x) is the thickness of the mixing layer.
In nondimensional self-similar coordinates, (x,η = y/x), the spreading rate S becomes simply the
transformed nondimensional thickness of the layer S = δ. 

Several formulations have been proposed to measure the thickness of the mixing layer.
The most well-known formulation is the energy thickness used by Birch and Eggers (ref. 3) in the
1980–81 AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows. In this definition, the
thickness δ is defined as the difference between the values of y/x where (U – U2)2/(U1 – U2)2 is 9/10
and 1/10. 

There are other well-known definitions to measure the thickness of the mixing layers (refs. 19
and 30). One of them is Bogdanoff’s vorticity thickness, δω = (U1 – U2)/(dU/dη)max, and another is
Roshko’s pitot thickness, where δpt is defined as the difference between the values of y/x where the
pitot pressure is 0.95 and 0.05. Two other correlation techniques for comparing spreading rates were
also assessed by Viegas and Rubesin (ref. 30). One is based on Roshko’s pitot thickness and is defined
as G(Mc) = S(U1 + U2R)/((U1 – U2)(1 + R) where R2 = ρ2/ρ1, and the other one is based on
Bogdanoff’s vorticity thickness and is defined as Cω(Mc) = S(U1 + U2)(U1 – U2). These different
definitions of spreading rates were tested and showed no significant differences in the comparison
between the four model predictions and the experimental Langley data.

Figure 11.2 shows the comparison of spreading rates predicted with the four turbulence mod-
els with no compressibility corrections and the experimental Langley data. The predicted results are
shown with lines and the experimental data are shown with symbols. The most significant result is
that all models fail to predict the experimental data on the decrease of spreading rate with increasing
convective Mach number. This is a well-known weakness of present turbulence models.

It is well known that present turbulence models fail to predict the decrease of spreading rate
with increasing convective Mach numbers shown by experiment. Recently, model corrections have
been proposed by Sarkar et al., Zeman, and Wilcox (see ref. 4). These corrections add an additional
term for the dilitation-dissipation of turbulent kinetic energy and improve the predictions of spreading
rates in better agreement with experiment (ref. 4).  Figures 11.3a, 11.3b, and 11.3c show the compari-
son between the predicted results of the k-ε, k-ω, and SST k-ω turbulence models including the
dilitation-dissipation model of Sarkar et al. and the compilation of experimental Langley data. There
are several factors that have to be considered in the analysis of these results. Figure 11.3a shows the
results of the spreading rate nondimensionalized with the corresponding spreading rate value pre-
dicted by each model for the incompressible mixing layer; this is normally done in reporting spread-
ing rate values for the compressible mixing layer. All models show very similar predictions with a
decrease of spreading rate and overprediction of the experimental data with increasing Mc. One addi-
tional effect that has to be considered is the sensitivity of the predictions of the k-ω model with lower
freestream values of ω. Figure 11.3b shows the range of spreading rates predicted with high and low
values, and an intermediate value of freestream ω. The agreement with experiment seems to improve
with lower values of freestream ω. However, all the models predict very different values of spreading
rate for the incompressible mixing layer, and this fact should be considered to obtain an accurate
representation of the predictions. Figure 11.3c shows the comparison of the actual predictions of
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spreading rates and the compilation of experimental Langley data. The spreading rates predicted with
the    k-ε and SST k-ω models show an intermediate value of the experimental data range and much
less sensitivity to Mc than the experimental data. The predictions of the k-ω model show strong
freestream sensitivity in the presence of low Mc, and the predictions show better agreement and less
freestream sensitivity in the presence of high Mc.

d. Sensitivity analyses

1) Freestream turbulence sensitivity study

The sensitivity of the model predictions to their freestream boundary values is shown below.
Figure 11.4 shows the variation of the spreading rates obtained with different freestream values of the
eddy viscosity. The simulations are based on the conditions of the experiment of Samimy and Elliot
(refs. 4, 29, and 31) with Mc = 0.86, freestream Mach numbers of 3.07 and 0.46, freestream density
ratio of 0.36, and located at x = 210 mm downstream of the initial mixing zone. The simulations use a
uniform distribution of 300 grid points within the domain –1/10 ≤ η ≤ 1/10. The freestream values of
the nondimensional turbulent viscosity N = 10–n varied with –13 ≤ n ≤ 0.

The spreading rates predicted with the k-ε and SST models are quite insensitive to freestream
turbulence. Both models underpredict the experimental data S = 0.105, results that are consistent with
those reported in figure 11.1. The k-ε model predicts an spreading rate of 0.062, and the SST model
predicts an spreading rate of 0.063-0.064. The k-ω model predictions show a strong sensitivity to
freestream turbulence. Small freestream eddy viscosity values predict a spreading rate of 0.042, large
freestream eddy viscosity values predict a spreading rate of 0.154, and intermediate values are pre-
dicted in between these two limits. The one-equation model of Spalart-Allmaras predicts a spreading
rate of 0.059 with N ≤ 10–3 and increases only with very large values of freestream turbulence, up to a
value of 0.136 with a nondimensional eddy viscosity of N = 1.

The sensitivity of the turbulence models to freestream turbulence on the spreading rate of the
mixing layer of compressible fluids is consistent with the results obtained for free-shear flows of
incompressible fluids.

2) Grid sensitivity study

A grid sensitivity study for each model is recommended to provide an estimation of the resolu-
tion needed to capture an accurate solution. The computations were performed with 50, 100, 150,
300, 500, and 1000 grid points with a uniform distribution inside the domain –1/10 ≤ η ≤ 1/10. The
simulations are based on the conditions given in the previous subsection c. 

Figure 11.5 shows the sensitivity of the model solutions to the number of grid points used in the
calculations. The predictions obtained with the four turbulence models are reported based on the per-
cent errors with respect to the solution obtained using 1000 grid points. In general, errors can be con-
trolled within less than 2% if 100 grid points or more are used in the calculations of the mixing layer
with the k-ε, SST, and S-A models. The k-ω model shows larger sensitivity to grid resolution, and
errors greater than 2% were obtained in the simulations with less than 500 grid points. 
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        Part D. Attached and Separated Turbulent Boundary Layer Flows 

The turbulent flows included in this study are the flow over an adiabatic flat plate of an incom-
pressible fluid and a compressible fluid at Mach 5, the adverse pressure gradient flow on an axisym-
metric cylinder, the shock/boundary layer flow on an axisymmetric bump, and a transonic flow on the
RAE 2822 airfoil. The present list of flows is shown below.

Unless it is otherwise stated, the code used in this study is the compressible Navier Stokes code 
of Huang and Coakley, TURCOM. A detailed discussion of this code is given in reference 32.    

Section 12. Incompressible Boundary Layer

Section 13. Compressible Flat Plate Flow

Section 14. Axisymmetric Boundary Layer with Adverse Pressure Gradient

Section 15. Transonic Separation Flow over an Axisymmetric “Bump”

Section 16. RAE 2822 airfoil
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Section 12. Incompressible Boundary Layer

a. Empirical correlations of data

 

The incompressible “flat plate” (zero pressure gradient) boundary layer far enough down-
stream of transition can be defined by any one thickness parameter: the standard is the momentum-
thickness Reynolds number 
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≡
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/
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. The model predictions will be compared with the following
empirical correlations of mean velocity profile and skin friction.

The similarity laws can be explicitly displayed by Coles’ mean velocity profile (refs. 33
and 34) as

(12.1)

where 
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 is the boundary layer thickness. Coles took the von Kármán constant 
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 as 0.41 and the addi-
tive constant in the logarithmic law as 5.0 and tabulated the “wake parameter” 
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 which he chose to
asymptote to 0.55 at 
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 > 5000. Coles’ tabulation (ref. 34) only goes up to 
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 = 29000 but his for-
mulas have been used for higher Reynolds number, assuming 
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 = constant = 0.55. 

The von Kármán-Schoenherr correlation

(12.2)

is a good approximation for skin friction. The experimental uncertainty for skin friction is at least
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2%, and this correlation agrees with that of Coles to within this uncertainty (see table 12.1) when 
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 are determined by integrating Coles’ law.

   Table 12.1. Skin friction coefficients
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15000 or so. Fortunately, the skin friction coefficient is not very sensitive to the exact value of 
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high Reynolds numbers. A 10% decrease in 
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tables 12.2 and 12.3, respectively. 
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    Table 12.2. 
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 vs. 
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 at 
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 = 10,000—Coles’ velocity law

       Table 12.3. 
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 vs. 
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 at 
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 = 100,000—Coles’ velocity law 

Although the computational experiments have suggested that for 

 

Re

 

θ

 

 < 5000 the influences of inlet
conditions become unimportant, these results have been obtained using an inlet boundary layer with

 

Re

 

θ

 

 = 1000.

 

b. Results

 

The results herein show the comparison of the skin friction at 

 

Re

 

θ

 

 = 10000. At this Reynolds
number, it is found that the solution is not affected by the inlet conditions used (see fig. 12.4 for
effects of inlet conditions). In this section, all calculations were performed for the following condi-
tions unless otherwise stated. The ratio of turbulent viscosity to molecular viscosity in the freestream,
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, and the ratio of the square root of the freestream turbulent kinetic energy to the freestream
velocity, 
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, were both taken to be 0.1% (see more details in paragraph 3 below). The computa-
tional box was defined by
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) with a height to length ratio of 0.02. The
grid points were expanded exponentially from the wall to the top of the domain with an expansion
ratio determined by the choice of the value of 

 

y

 

+

 

 at the first grid point. The value of 

 

y

 

+

 

 at the first point
was kept approximately 0.1. Grid sensitivity study has shown that at least 60 points should be used
inside the boundary layer to obtain grid-independent results. There is virtually no difference in solu-
tions between a boundary layer code and a Navier-Stokes code as will be seen later. Therefore, it is
adequate to use a boundary layer code to assess the model performance. However, for those who are
interested in validating the model implementations in their own application (Navier-Stokes) codes, at
least 100 grids in the streamwise direction with an expanding grid-spacing ratio of 1.05 are recom-
mended to achieve accurate solutions. For use of compressible codes, the freestream Mach number
should be kept on the order of 0.1.

 

 1) Grid sensitivity study

 

The computations were performed with 50, 100, 250, 500, and 1000 grid points in the 

 

y

 

 direc-
tion. This corresponds to approximately 35, 65, 145, 265, and 465 grid points inside the boundary
layer at 

 

Re

 

θ

 

 = 10000. The results are reported based on the percent errors with respect to the solution
obtained using 1000 grid points. Figure 12.1 shows the sensitivity of the model solutions to the num-
ber of grid points used in the calculations. As can be expected, the one-equation model is less sensi-
tive to the grid refinement. In general, errors can be controlled within less than 2% if 100 grid points
are used in the calculations (corresponding to 60 grid points inside the boundary layer).
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2) Sensitivity to the distance of the first point from the wall, 

 

y

 

+
1

 

 

 

The computations were performed with 

 

y

 

+
1

 

 

 

≈

 

 0.014, 0.14, 0.4, 0.7, 1.1, and 1.4 using
500 points in the 

 

y-direction. The results are reported based on the percent errors with respect to the
solution obtained using y+

1 ≈ 0.014. Figure 12.2 shows the sensitivity of the model solutions to the
distance of the first point from the wall used in the calculations. The k-ε model is very sensitive to the
value of y+of the first grid point while the zero and the one-equation models are the least sensitive
ones. In general, one should limit the value of y+

1 to be less than 0.3 to have accurate solutions.

3) Freestream sensitivity study

The computations were performed by fixing the freestream value √k∞/U∞ at the upstream
boundary at 0.1% while varying the value of freestream turbulent viscosity to molecular viscosity
ratio according to µt∞/µl∞ = 10n. Values of n chosen were –6, –3, –1, and 0. Figure 12.3 shows the
sensitivity of the model solutions to the choice of n. It can be seen that the k-ω model is very sensitive
to high freestream turbulence as discussed by Menter (ref. 12). In general, one should choose the
value of n to be less than –3. This choice is well within the criteria set by Menter to have freestream-
independent results.

4) Effects of inlet conditions and code-independence study

Three codes were used in this study: a boundary layer code (ref. 35), an incompressible
Navier-Stokes code (INS2D) (ref. 20), and a compressible Navier-Stokes code (ref. 32). The “stan-
dard” solutions for each code were established following the guidelines described above. Figure 12.4
shows the comparison of the results obtained by the three codes using the SST model. Differences in
the region Reθ < 5000 were mainly due to the different inlet conditions used in the three runs. Differ-
ences in skin friction coefficients are less than 1% after Reθ > 5000. Comparisons based on other
models are also available and they all show similar conclusions.

5) Mach number effects

Figure 12.5 shows the comparison of the results obtained with the k-ε model using freestream
Mach numbers of M∞ = 0.1 and M∞ = 0.5. The solution obtained from the incompressible boundary
layer code is also shown. In this case the effects of inlet conditions were not investigated. It can be
seen that the skin friction coefficients for M∞ = 0.5 are slightly lower than those for M∞ = 0.1. At
Reθ = 10000, the difference between the incompressible boundary layer solution and the Navier-
Stokes Mach 0.1 solution is about 0.15% while the difference between the incompressible boundary
layer solution and the Navier-Stokes Mach 0.5 solution is about 1.7%.

The comparisons of both skin friction cf and shape factor H are shown in figures 12.6
and 12.7, respectively. In addition, the results in figures 12.8 and 12.9 are reported based on the per-
cent errors, (cf – cf(K-S))/cf(K-S) × 100 and (H – H(Coles))/H(Coles) × 100. All models predict
Coles’ correlation for skin friction within ±2% for Reθ > 104 and tend to overpredict the skin friction
within 1% to 3% with respect to the von Kármán correlation at high Reynolds numbers, (Reθ = 105).
The differences are larger at low Reynolds numbers; the SST k-ω and the Spalart-Allmaras models
overpredict 4% while the k-ε and k-ω models underpredict 3.5% and 5%, respectively, the skin
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friction of the von Kármán correlation at Reθ = 2000. The SST k-ω and the Spalart-Allmaras models
tend to agree better than the other models with the values obtained from Coles’ correlation, and they
agree almost exactly with Coles’ shape factor for Reθ > 5000.

Plots of u+ against y+ for Reθ = 10000 and 100000 are shown in figures 12.10 and 12.11,
respectively. The results are also presented in term of percent errors with respect to Coles’ profiles,
shown in figures 12.12 and 12.13. All models show agreement with the empirical correlation. In addi-
tion, the Reθ = 100000 run provides information on the predicted values for κ and C in the inner layer.
Use y+ between 50 and 3000 (y/δ ≈ 0.1) to extract values of κ and C. Table 12.4 shows values of κ and
C evaluated from the benchmark model solutions.

          Table 12.4. Predictive values of κ and C 

    

Model κ C

k-ε 2-eqn 0.4096 5.525

k-ω 2-eqn 0.3831 4.011

SST k-ω 2-eqn 0.3816 3.939

S-A 1-eqn 0.4073 5.060

B-L 0-eqn 0.4101 5.2034
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 Figure 12.1. Grid sensitivity study—flat plate boundary layer.
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         Figure 12.3.  Freestream sensitivity study.
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Section 13. Compressible Flat Plate Flow

a. Empirical correlations of data

The model predictions will be compared with the following empirical correlations of mean
velocity profile and skin friction of a Mach 5 boundary layer flow over an adiabatic surface. The gen-
eral consensus is that the Van Driest I transformation (ref. 36) is a good fit to the experimental data of
the velocity profile in the inner layer, and the Van Driest II transformation (ref. 37) offers a good fit to
the experimental data of skin friction. 

The Van Driest I velocity transformation is   

Uc
+ =    ln y+ + C (13.1)

where  

                            Uc
+ = Uc / Ut      y

+ = ρw Ut y /µw     κ = 0.41      C = 5

     (13.2)

The general formula for Van Driest II skin friction transformation is 

 (13.3)
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   (13.4)
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For a flow with freestream temperature of 300 K, table 13.1 gives the skin friction values at
selected Reynolds numbers:  

   Table 13.1. Skin friction coefficients 

 The velocity profile family of Huang, Bradshaw, and Coakley (ref. 38) is an extension of the
Van Driest I transformation applied to Coles’ profile that includes the sublayer and the wake regions.
This profile family is a good fit to boundary layer velocity profiles for a wide range of Mach and
Reynolds numbers. It is also displayed in this comparison but should not be treated as an exact solu-
tion of the compressible boundary layer flow.

b. Results

Figure 13.1 shows the comparison of the skin friction versus Reynolds number for the Reθ
values listed in table 13.1. The calculations were performed with y+ at the first grid point at approxi-
mately 0.1 and 120 points inside the boundary layer. The freestream temperature was set at
T∞ = 300 K. All models seem to follow the empirical trend well. The k-ε model, however, shows a
significant underprediction of skin friction coefficient. This is due to the fact that the model is very
sensitive to low Reynolds number effects and tends to overpredict compressible log law as shown in
figure13.2, where comparisons of the mean velocity and temperature profiles are shown. As can be
seen from the comparison of the dimensionless transformed velocity profiles, the k-ε model tends to
predict a large slope in the inner layer while all the other models seem to follow the law of the wall
for compressible flow reasonably well. The S-A model appears to give the best overall predictions of
cf  and u+.

Reθ 5000 10000 20000 50000 100000

cf 0.001077 0.0009285 0.0008087 0.0006830 0.0006065
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Section 14. Axisymmetric Boundary Layer with Adverse Pressure Gradient

a. Experimental data and description of numerical procedure

The experiment performed by Driver (ref. 39) consists of an axial flow along a cylinder with
superimposed adverse pressure gradient. Boundary layer suction was applied through slots on the
wind tunnel walls, and this mass flow removal (about 10% of the incoming mass flow trough the tun-
nel) allowed the flow to remain attached along the tunnel walls in the presence of the strong pressure
gradient. Experimental data, including velocity and Reynolds stress profiles, have been measured in
several locations. Since flow separation was observed experimentally, a full Navier-Stokes prediction
method was performed and is recommended. The solution procedure requires the specification of an
outer boundary such as a streamline. The experimental velocity profiles have been integrated to
obtain the stream function and corresponding outer streamline. From a computational point of view,
this method allows the flow to be treated as flow in an annular duct with one boundary defined with
the surface of the cylinder (no-slip condition) and other boundary defined with an outer streamline
(slip condition). The recommended outer streamline distance h(mm) as a function of the coordinate
distance x(mm) is 

      x(mm) = [–457.2, –330.2,  –228.6,  –152.4,  –76.2,  –12.70,    50.8,  101.6, 
                     152.4,   228.6,    304.8,    400.0,  500.0,    600.0,  700.0,  800. 0]

      h(mm) = [  37.08,    37.10,    38.51,    42.66,  48.53,    55.44,  61.88,  65.08,
                    67.89,    70.40,    71.20,      69.0,  63.04,    56.04,  48.04,  42.08]

in which the outer streamline profile between x = –457.2 mm and x = 304.8 mm is estimated from
measured experimental velocity profiles, and for x ≥ 400 mm it is estimated by matching the mea-
sured pressure coefficients, cp, along the cylindrical surface. It should be noted that since the flow
reattached around x ≈ 250 mm, the exact shape of the streamline after x = 304.8 mm does not affect
the flow field in the region of current interest—a fact that will be demonstrated later.

The inlet profile is a good match to an equilibrium boundary layer with Reθ = 2760 and can be
obtained by matching the momentum thickness from a calculation of a spatially evolving boundary
layer (using the same Navier-Stokes code or a boundary layer code).

The following solutions are obtained from a mesh with 201 × 81 grid points in the x and
y directions, respectively. The grid is uniform in the streamwise direction and exponentially expanded
in the radial direction with the first y+ less than 1/10.

b. Results

Figure 14.1 shows comparisons of the pressure and skin friction coefficients based on the
same outer boundary. With the exception of the k-ε model, all models predict flow separation. Over-
all, the SST model gives the best performance.

Comparisons of the velocity, turbulent kinetic energy, and shear stresses at some specific mea-
sured locations are displayed in figures 14.2, 14.3, and 14.4, respectively. Again, the figures show that
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the SST model gives the best overall performance, the k-ε model the worst, and the other two models
are in between.

There are a few uncertainties associated with this test case—grid resolution, effects of inlet
conditions, and effects of outflow boundary conditions. Figure 14.5 shows the comparison of pressure
and skin friction coefficients using four different grids—201 × 81, 101 × 81, 301 × 161, and
89 × 89—all being uniform in the streamwise direction. The results for the last grid system (89 × 89)
were obtained using INS2D code (ref. 20). For purposes of illustration, only results for the SST model
are presented. As can be seen from the figure, the results obtained using 301 × 161 and 201 × 81 were
almost identical. Results obtained using 101 × 81 show a slight undershoot of pressure coefficient for
x/R0 approximately between –1 and 1. This is because in this region there is a rapid expansion of
streamlines (see the plot of the outer boundary in the first subset in fig. 14.7), and hence a uniform
grid arrangement for such a small grid system may not be sufficient.

As mentioned earlier, the inlet conditions were obtained by matching experimental Reθ of a
Navier-Stokes flat-plate boundary layer calculation. All models show a good match of velocity, turbu-
lent kinetic energy, and shear stress profiles at the first measured location, as shown in the first subset
of figures 14.2, 14.3, and 14.4, respectively. There is some uncertainty associated with the measure-
ments in the inlet. In figure 14.6, effects of inlet conditions were studied—in this case, results were
compared with those obtained by matching an Reθ value being 10% less than the experimentally sug-
gested value. As can be seen from the figure, the effects seem smaller than differences between model
predictions.

The last location for measuring profiles was at x/R0 ≈ 4.4 and R0 = 6.927 mm. From the inlet
up to this position, the outer streamline was estimated by allowing the mass flow rate (or θ*) between
the outer boundary and the wall to satisfy a prescribed given value. There were no profile measure-
ments after x/R0 ≈ 4.4, and therefore the outer boundary was estimated by matching the predicted sur-
face pressure coefficients against the measured ones (fortunately, the differences between model
predictions seem small in this region). To ensure that the exact position of the outer boundary after
x/R0 ≈ 4.4 has little effect in the region of interest, the current results were compared with ones
obtained by using an outer boundary of fixed height after x/R0 ≈ 4.4. As can be seen from figure 14.7,
the results indeed show very little effect.

Finally, a test was conducted to show effects of freestream boundary conditions for the k-ω
model. Figure 14.8 shows the comparison of two calculations using the k-ω model—one with
µt/µl = 1 and the other µt/µl = 0.001 at the inlet boundary with √(k/U∞) = 0.1%. As can be seen from
the results, as expected, effects of freestream conditions do have some important impact on the pre-
dictive behavior of the k-ω model for this flow as well. As can be seen from the comparison, the skin
friction predicted with µt/µ = 1 is slightly larger than that predicted with µt/µ = 0.001 everywhere,
and the pressure coefficient is also overpredicted for the region of x/R0 between 0 and 5.
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Section 15. Transonic Separation Flow over an Axisymmetric “Bump”

a. Experimental data

The experiment (ref. 40) was conducted in the Ames 2- by 2-Foot Transonic Wind Tunnel
with total temperature and total pressure of 302 K and 9.5⋅104 N/m2, respectively. The axisymmetric
flow model of this investigation consisted of an annular bump on a circular cylinder aligned with the
flow direction. The longitudinal section of the bump was a circular arc. The axisymmetric configura-
tion was chosen to circumvent the problem of sidewall boundary layer contamination of two-
dimensionality that can occur in full-span two-dimensional tests. The thin-walled cylinder was
0.0762 m in outside radius and extended 61 cm upstream of the bump leading edge. The straight sec-
tion of the cylinder permitted natural transition and a turbulent boundary layer just ahead of the bump
of sufficient thickness to allow accurate determination of boundary layer information. However, the
boundary layer was not so thick, in comparison with the interaction on airfoils, that separation of
greater severity would occur than is representative of full scale. The circular-arc bump had a 20.32 cm
chord and a thickness of 1.905 cm. Its leading edge was joined to the cylinder by a smooth circular
arc that was tangent to the cylinder and the bump at its two end points. Test conditions were a
freestream Mach number of 0.875 and unit Reynolds number of 13.1⋅106/m. At this freestream Mach
number, a shock wave was generated of sufficient strength to produce a relatively large region of sep-
arated flow. The separation and reattachment points were at approximately 0.7 and 1.1 chords, respec-
tively. Boundary layer measurements were obtained by the laser velocimeter technique from
upstream of separation through reattachment. These data consist of profiles of mean velocities, turbu-
lence intensities, and shear stresses in the streamwise and normal direction. Separation and reattach-
ment locations were determined from oil-flow visualizations, and local surface static pressures were
obtained with conventional pressure instrumentation.

b. Results

Figure 15.1 shows the comparison of the pressure coefficients along the surface of the axisym-
metric “bump.” Both k-ε and k-ω models predict a delay of the shock position and therefore underpre-
dict the size of the flow separation. The SST model provides the best overall performance and the S-A
one-equation model comes second. 

Comparisons of the velocity, shear stress, and turbulent kinetic energy profiles at specific mea-
sured positions are shown in figures 15.2, 15.3, and 15.4, respectively. Since experimental data pro-
vide only two components of normal stresses, the turbulent kinetic energies shown in figure 15.4 were
obtained  by setting  w’2 = (u’2 + v’2)/2. The SST k-ω model gives the best agreement of the mean
velocity profile with experiment, and closer agreement of mean shear-stress profiles.

Figure 15.5 shows the grid-independent comparison for the SST model. The solid line repre-
sents results obtained using 181 × 108 grid points. The grid distribution in the streamwise direction is
nonuniform by allowing denser grids near regions of high pressure gradients. The distribution of grid
points in the cross-stream direction is expanded exponentially with y+ values at the points adjacent to
the wall being less than 0.1. The dashed line represents results obtained using 382 × 201 grid points.
The grid points in the streamwise direction were increased by placing one additional grid point
between two points of the original grid system (181 × 108). As can be seen from the comparison, the
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solution is almost unchanged. It should, however, be noted that Menter, who used CFL3D (ref. 21)
and a grid system similar to the current one (181 × 101), obtained a slightly different solution. This is
the only case out of all the cases studied so far in which differences between the two codes were
found. 

Although the calculations were performed from the leading edge of the experimental rig
(x/c ≈ –3.2), it appears that the profiles in the regions just before the flow reaches the bump
(x/c ≈ –0.25) fit the data reasonably well, as can be seen from the first subset of figure 15.2. The cal-
culations were obtained by assuming that the inlet boundary layer profile at the leading edge has a
momentum thickness of 200, but it has been found that this profile assumption at the leading edge
does not have much impact on the solutions. Figure 15.6 shows the comparison of pressure coeffi-
cients for the results obtained by using two different inlet boundary layer profiles, one with Reθ = 200
and the other Reθ = 1000. It can be seen that although there is slight change of the velocity profile
before the bump the comparison of the pressure coefficients is almost unchanged.

Finally, effects of the freestream conditions of the k-ω model are presented in figure 15.7. As
can be seen in the figure, by decreasing the value of the freestream ω  1000-fold, the results are almost
unaffected; both predict a delay of the shock position and underpredict the size of the flow separation.
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            Figure 15.1. Comparison of surface pressure coefficient—transonic bump flow.
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 Figure 15.3. Comparison of mean shear-stress profiles. See symbols in figure 15.1.
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Figure 15.4. Comparison of the turbulent kinetic-energy profiles. See symbols in figure 15.1.
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Figure 15.5. Grid refinement study.
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Figure 15.6. Effects of inlet boundary layer profiles.
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Figure 15.7. Effects of freestream conditions for the k-ω model.
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Section 16. Transonic airfoil: RAE 2822

a. Experimental data

 

This data set contains selected results for the RAE 2822 airfoil from the boundary layer, wake,
and flow field measurements made in the RAE 2.438 

 

× 

 

1.829 m tunnel at Farnborough, United King-
dom (ref. 41). The detailed description of this test problem can be obtained from FILE 1120 of the
1980–81 AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows (ref. 17). Flow condi-
tions for Case 10 are 

 

M

 

 = 0.75 and 

 

Re 

 

= 6.2 

 

⋅ 

 

10

 

6

 

. The recommended angle of attack was 2.79

 

°

 

 (the
sensitivity of the solution to the assumed angle of attack will be presented in a later discussion). The
data measured included surface pressure coefficients on both upper and lower surfaces, skin friction
coefficients, boundary layer profiles on the upper surface at selected locations (

 

x

 

/

 

c

 

 = 0.152, 0.179,
0.319, 0.404, 0.498, 0.574, 0.650, 0.75, and 0.9), and three velocity profiles in the wake region
(

 

x

 

/

 

c

 

 = 1, 1.025, and 2). It should be noted that the skin friction coefficient is defined by the local
boundary layer freestream conditions, not by the incoming flow conditions.

 

b. Results

 

The calculations were performed using a 386 

 

× 

 

82 grid provided by L. Wigton of the Boeing
Company. Far field boundary conditions on the velocity field took into account the effect of airfoil
circulation due to lift. The grid is shown in figure 16.1. The comparison of the pressure and skin fric-
tion coefficients is given in figure 16.2. As can be seen from figure 16.2, the 

 

SST

 

 model shows very
good agreement with the experimental data; both the 

 

k

 

-

 

ε

 

 and 

 

k

 

-

 

ω

 

 models exhibit a shift of shock posi-
tion in the downstream direction, and the 

 

S-A

 

 model result is in between. It should be noted that the

 

k

 

-

 

ε

 

 model fails to predict flow separation. The comparison of the velocity profiles at the above-
mentioned locations is presented in figure 16.3.

The comparison of results obtained using the Boeing grid and grids used by others is pre-
sented in figure 16.4 for the 

 

SST

 

 model. As can been seen from figure 16.1, Boeing’s grid condenses
many points near the stagnation and the shock regions. Thus it results in a better pressure peak near
the front of the airfoil and a better shock resolution. 

Effects of freestream conditions on the 

 

k

 

-

 

ω

 

 model are shown in figure 16.5. The freestream
turbulent kinetic energy is fixed according to 

 

k

 

/

 

U

 

∞

 

2

 

 = 10

 

–6

 

 while the value of 

 

µ

 

/

 

µ

 

t 

 

varies from 10

 

–3

 

to 1. The results show that the 

 

k

 

-

 

ω

 

 model does not seem to be affected by the freestream conditions in
this particular test case.

Finally, by slightly adjusting the angle of attack by 

 

±

 

10%, it can be seen from figure 16.6 that
the change of the solution is smaller than the differences found in the models.
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Figure 16.2. Comparison of surface pressure and skin friction coefficients.
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Figure 16.3. Comparison of velocity profiles. See symbol notations in figure 16.2.
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Figure 16.6. Effects of slight variation in the angle of attack of the mean flow.
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Part E. General Conclusions

Section 17. Conclusions and Recommendations

 

In this section, we will give our summary of the work performed and our conclusions regard-
ing the relative performance of the various models tested. Four turbulence models were tested on a
series of ten flows. The models included the one-equation model of Spalart and Allmaras and the two-
equation models of Wilcox, Launder-Sharma, and Menter. The Wilcox model and the Menter 

 

SST

 

models are 

 

k

 

-

 

ω

 

 models while the Launder-Sharma model is a 

 

k

 

-

 

ε

 

 model. Of the ten flows tested,
seven were relatively simple free-shear and zero-pressure-gradient boundary layer flows and three
were relatively complex flows involving separation. In addition to testing the relative performance of
the models by comparing predictions with experimental data, tests to determine the numerical perfor-
mance of the models were also conducted. These tests included studies of grid refinement and sensi-
tivity to initial and boundary conditions.

Our conclusions regarding the relative performance of the various models studied is as fol-
lows. The best overall model is judged to be the 

 

k

 

-

 

ω

 

 

 

SST

 

 model, followed by the Spalart-Allmaras
model, then the Launder-Sharma 

 

k

 

-

 

ε

 

 model, and finally the 

 

k

 

-

 

ω

 

 model of Wilcox. The 

 

SST

 

 model is
considered the best model because it does the best overall job in predicting the complex flows involv-
ing separation while giving results comparable with the best of the other models for the simple flows.
For the simple free-shear flows, all of the models except the Wilcox model are about equal in their
performance, with the Spalart-Allmaras model giving best predictions of the mixing layer and plane
wake flows and the Launder-Sharma and 

 

SST

 

 models giving the best predictions of the jet flows. The
performance of the Wilcox model is judged to be poor for these flows because of its sensitivity to
freestream conditions with the resulting unreliability of solutions. None of the unmodified models do
well in predicting the compressible mixing layer, although with compressibility modifications they do
give improved predictions.

For the complex flows, as stated above, the best overall model was the 

 

SST

 

 model because of
its ability in predicting separation. The worst model in this regard was the Launder-Sharma 

 

k

 

-

 

ε

 

 model
with the Spalart and Wilcox models falling in between. The Wilcox model did not appear to be as sen-
sitive to freestream conditions for the complex flows (where a Navier-Stokes solver was used) as it
was for the free-shear flows, although there was sensitivity. While there appear to be several possible
explanations for this, we are not prepared to offer a definitive explanation at this time.

With regard to the numerical performance of the models, the Spalart-Allmaras model was
found to be the best, followed by the 

 

SST

 

 model, and then the Launder-Sharma and Wilcox models.
This evaluation was based on grid spacing required for accurate solutions and the maximum 

 

y

 

+

 

 allow-
able at the first grid point off the wall.

Although the Menter 

 

SST

 

 and Spalart-Allmaras models are found to give superior perfor-
mance compared with the other models, there is considerable room for improvement of these models.
As stated above, the 

 

SST

 

 model needs improvement on the wake flow, and the S-A model needs
improvement on the jet flows. All of the models need better compressibility corrections for free-shear
flows. Although not discussed in this report, none of the models appear to do well on recovering flows
downstream of reattachment. Corrections for rotation and curvature are still another area requiring
attention. Finally, the 

 

SST

 

 and 

 

S-A

 

 models are not coordinate-invariant in that they use functions



 

80

dependent on distance from nearest walls, whereas the models of Launder and Sharma and Wilcox
are invariant. Coordinate invariance is a desirable feature in models since it removes ambiguities and
uncertainties in the definition of a distance function and is more in tune with the original intent
of higher order turbulence modeling. It would be desirable if the two newer models could be made
coordinate-invariant as well. These topics, as well as additional testing of the currently popular
models on a variety of flows, will be the subject of future studies.
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Appendix. Self-Similar Equations for Free-Shear Flows

 

There is a large variety of self-similar flows that are of great importance from an engineering
and a turbulence modeling point of view. These flows include a large variety of physical phenomena
of practical flows (ref. 3), compressible and incompressible flows, attached boundary layers, and free-
shear flows. Mixing layers, jets, and far wakes belong to this class of turbulent flows. The principle of
self-similarity of free-shear flows at high Reynolds numbers asserts that far enough downstream the
flow is geometrically similar at all sections and the similarity is independent of initial conditions
(refs. 3 and 4). These flows can be solved numerically using Navier-Stokes codes in complex engi-
neering applications, and using simpler methods with transformed self-similar equations in turbu-
lence modeling validations.

 

a. Compressible boundary layer equations

 

The two-dimensional equations of motion for the self-similar turbulent mixing layer of a com-
pressible perfect gas are given by the conservation of mass, momentum, and energy equations and the
equation of state. The static pressure is assumed constant and equal to the freestream pressure. The
conservative form of the equations neglecting lower order terms is written as follows:

 (1)

where 

 

x

 

 and 

 

y

 

 are the coordinate directions, 

 

u

 

 and 

 

v

 

 are the velocity components, 

 

ρ

 

 is the density, 

 

T

 

 is
the temperature, 

 

p

 

 is the static pressure, and 

 

H

 

 is the total enthalpy of the fluid. The turbulent kinetic
energy is 

 

k

 

, the absolute eddy viscosity is 

 

µ

 

t

 

, the specific heat of the gas at constant pressure is 

 

c

 

p

 

, the
perfect gas constant is 

 

R

 

, and the turbulent Prandtl number is 

 

Pr

 

t

 

. 

Equations 1 for total enthalpy and energy conservation include the turbulent kinetic energy, 

 

k

 

.
This quantity is not available and is omitted in zero-equation turbulence models; it can be included or
excluded in two-equation turbulence models. The rigorous approach indicates that all quantities
should be included, although little difference is found when these terms are included in the present
simulations of free-shear flows.

In most computational fluid dynamics (CFD) codes, the equations of motions are written in non-
dimensional form. Equations 1 may be written in nondimensional form using a reference length scale,
pressure, and density leading to a similar set of equations where the factor 

 

c

 

p

 

 is replaced by the factor

 

γ

 

/(

 

γ

 

 – 1). The factor 

 

γ

 

 is the ratio of specific heats, which is equal to 

 

γ 

 

= 1.4 for a diatomic perfect gas
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according to classical statistical mechanics. The reference values are usually selected to be freestream
values in the high-speed side of the mixing layer.

 

b. Incompressible two-dimensional and axisymmetric equations

 

The equations of motion for two-dimensional and axisymmetric free-shear flows of an incom-
pressible fluid are given by the conservation of mass and momentum. The static pressure is assumed
constant and equal to the freestream pressure. The conservative form of the equations neglecting
lower order terms is written as follows:

 (2)

In equations 2, the subscript 

 

j 

 

= 0 stands for two-dimensional flow and 

 

j 

 

= 1 stands for axisymmetric
flow. The kinematic eddy viscosity is defined as 

 

ν

 

t

 

 = 

 

µ

 

t

 

/

 

ρ

 

.

 

c. Separation of variables and coordinate transformation

 

The self-similar equations can be written in compact form with the following transformations
from (

 

x,y

 

) coordinates to (

 

η

 

,

 

x

 

) self-similar coordinates, and separation of variables for the velocity
components and turbulence variables, for mixing layer and jet flows (refs. 3 and 4) as

   (3)

and with the following transformation (ref. 2) for far wake flows as 

   (4)

where the self-similar variables 

 

U, V, K, W, N, E, T

 

, and 

 

ρ

 

 are functions only of 

 

η

 

 (for simplicity  the
symbols 

 

T

 

 and 

 

ρ

 

 are repeated in the definition of the separation of variables); the variables 

 

a

 

, 

 

u

 

1

 

, and 

 

r

 

are functions only of the transformed coordinate 

 

x

 

; and 

 

u

 

∞

 

 is the constant velocity of the freestream
wake flow. 

 

D

 

 is the total drag per unit mass on the body upstream of the wake flow, and 

 

J

 

 is the
momentum flux per unit mass of the jet. The variables 

 

k

 

, 

 

ε

 

, and 

 

ω

 

 are the turbulent kinetic energy, dis-
sipation rate, and specific dissipation rate variables defined in the turbulence models.
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The transformation coefficient, a(x), is chosen without loss of generality for each one of the
turbulent free-shear flows as follows: 
    

d. Self-similar equations

The transformed boundary layer equations of motion for two-dimensional and axisymmetric
flows are shown below.

•  Mean momentum and mass conservation equations for compressible mixing layer

The self-similar mean momentum, energy, and mass conservation equations for free-shear flows
of a compressible fluid are shown below. 

(5)

where the transformed equations have no source terms, and the transformed transverse velocity com-
ponent is defined as V* = V – ηU.

The mean energy equation can be reduced to the following equation for the mean temperature
profile:

(6)

where E is the transformed dissipation rate of turbulent kinetic energy, and M1 is the Mach number of
the high-speed side of the layer. In equation 6, the source term has been transformed in order to set the

Flow a(x)

Mixing layer u1

Plane jet (J/x)1/2

Round jet J1/2/x3/2 

Far wake (D/ρx)1/2 

ρV∗
ηd

dU
ηd

d ρN ηd
dU

 
 

– 0=

ρV∗
ηd

dH
ηd

d γ
γ 1–
-----------ρN

Prt
--------

ηd
dT ρNU ηd

dU σk+ + ρN ηd
dK

 
 – 0=

ρV∗ ρV ηρU–≡ ρUdσ
0

η

∫–=

H
γ

γ 1–
-----------T

U
2

2
------ K+ +=

ρV∗
ηd

dT
ηd

d ρN
Prt
--------

ηd
dT

 
 – γ 1–( ) M1

2ρE=



84

range of mean velocity, temperature, and density between 0 and 1. If the turbulent kinetic energy is
neglected in the definition of total enthalpy in equations 5, then equation 7 for the mean temperature
is obtained. 

(7)

where the source term is a direct function of the production of turbulent kinetic energy.

•  Mean momentum and mass conservation equations for incompressible flows

For incompressible fluids, the self-similar equations for the mean momentum and continuity are
shown below.

(8)

The transverse velocity component V* is defined for each free-shear flow in the table on the following
page.

•  Two-equation turbulence models (refs. 2–4)

The self-similar equations for the two-equation turbulence models can be written in compact
form as

(9)

and the model constants for free shear flows are shown below as     

where the generalized nomenclature of model K-F stands for K-E or K-W models.

Model K-F E cf1 cf2 σf σk σc

k-ε (ref. 6) K-E E cε1=1.44 cε2=1.92 σε=1.3 1.0 0

k-ω (ref. 4) K-W β*WK γ=5/9 β/β∗ =5/6 σ=0.5 σ∗ =0.5 0

SST (ref. 14) K-W β*WK γ=0.44 β/β∗ =0.92 σω=0.856 1.0 σω
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•  One-equation turbulence model

The self-similar equations for the one-equation model of Spalart-Allmaras (ref. 7) can be writ-
ten in compact form as

(10)

•  Flow Parameters 

For each free-shear flow, the parameters of the model equations are defined as              

e. Boundary conditions

The boundary conditions on the velocity and turbulence variables are Dirichlet conditions
(specified function value) in freestream boundaries, and Neumann conditions (specified zero normal
gradient) in symmetry boundaries. 

The conservation of the total momentum leads to an additional integral constraint in free-
shear flows (conservation of total drag D in far wake flows and total momentum J in jet flows as
shown in the table on page 83). These necessary conditions must be satisfied by the numerical method
in order to achieve convergence from initial profiles to self-similar profiles. There are different
numerical methods to impose integral constraints into the numerical method. One successful proce-
dure is obtained by explicitly scaling the mean velocity profile after each numerical iteration of the
numerical relaxation until convergence is achieved; the system of ordinary differential equations may
be relaxed until the error reaches machine accuracy. However, this method decreases the rate of con-
vergence and increases the total computational time. For plane jet and far wake flows, the “inverse
method of relaxation” provides a much faster convergence to the self-similar solution. In this method,
instead of specifying a symmetry or Neumann boundary condition at the center of the flow, the veloc-
ity magnitude in the symmetry plane is specified after each iteration subject to the conservation of
total momentum in the streamwise direction. The use of such an adaptive Dirichlet condition instead
of Neumann condition at the center of these flows leads to a very fast relaxation procedure and the
same final solution.

Flow j Su Sk Sε Sω Ss V*

Mixing layer 0 0 0 U U -U -∫0η U(σ) dσ

Round jet 1 U 2U 2U 4U 0 -(1/η) ∫0η U(σ) dσ

Plane jet 0 0.5U U 2.5U 1.5U U -0.5 ∫0η U(σ) dσ

Far wake 0 0.5 1 2 1 0 -0.5η
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Turbulence Modeling Validation, Testing, and Development
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The primary objective of this work is to provide accurate numerical solutions for selected flow fields and
to compare and evaluate the performance of selected turbulence models with experimental results. Four popular
turbulence models have been tested and validated against experimental data of ten turbulent flows. The models
are: 1) the two-equation k-ω model of Wilcox, 2) the two-equation k-ε model of Launder and Sharma, 3) the two-
equation k-ω/k-ε SST model of Menter, and 4) the one-equation model of Spalart and Allmaras. The flows
investigated are five free shear flows consisting of a mixing layer, a round jet, a plane jet, a plane wake, and a
compressible mixing layer; and five boundary layer flows consisting of an incompressible flat plate, a Mach 5
adiabatic flat plate, a separated boundary layer, an axisymmetric shock-wave/boundary layer interaction, and
an RAE 2822 transonic airfoil. The experimental data for these flows are well established and have been
extensively used in model developments. The results are shown in the following four sections: Part A describes
the equations of motion and boundary conditions; Part B describes the model equations, constants, parameters,
boundary conditions, and numerical implementation; and Parts C and D describe the experimental data and the
performance of the models in the free-shear flows and the boundary layer flows, respectively.
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